Comprehensive system of quantitative methods for animal population health/disease analyses and programming

 

 

      E P I Z M E T H                            

                                                                

       (4.0a version, 2003)                           

                                                                          

contains information on   f o r m u l a e    and    p r o c e d u r e s    of     the methods used  in EPIZOO software package for animal population health analysis and programming 

                                                                           

 

          Author: Prof.MVDr. Vaclav  K o u b a , PhD, DrSc.

 

 Former:

Chief  of Animal Health Service,  Food  and  Agriculture  Organization  of the  United  Nations (FAO), Rome;  Veterinary Public Health Expert,  World  Health  Organization  (WHO), Geneva; Information System Expert,   International Office of Epizootics (OIE),  Paris;      Editor-in-Chief   of the FAO / OIE / WHO Animal Health Yearbook;    Technical  Director   and  Chief  Epizootiologist  of  State  Veterinary  Services,   Prague; Professor of Epizootiology,  University of Veterinary Sciences,  Brno;  Visiting Professor of Habana, Mexico City, Kosice and Prague Universities.

                                                     

 EPIZOO is  applicable on any animal species, any disease at any time and in any place.

 

The methods have been tested and used in practice for animal population health and disease analyses and control programmes at local, national and international levels. The software is applicable to any species of animal kingdom, i.e. including Homo sapiens.  EPIZOO software is available free of charge in  internet  - www.cbox.cz/vaclavkouba/software/software.zip.  

 

I N F O R M A T I O N   AND  I N S T R U C T I O N S:

 

a) EPIZMETH describes methods - formulae, their components and calculation  procedures of indicators as well as results construction used in EPIZOO  software package for animal population health analysis and programming.

b) In selected generally known basic statistical methods are mentioned   the references to bibliographical sources only.

c) EPIZMETH explanatory structure and menu are compatible with EPIZOO.

d) Formulae symbols: capital letter = numeric variable; letter(s) following  by '$' = variable in a form of text (string); variable following by '(I)' = loop component of a set of variables (sequence of instruction 'again and  again') usually introduced by 'FOR I=1 TO N'.

e) Arithmetic operators: + addition; - subtraction; * multiplication;  / division; ^ exponentiation; SQR = square-root function.

f) Abbreviation 'epi.' = epizootiological or epidemiological.

g) For printing under MS DOS using PRINT SCREEN key or under WINDOWS  a word processing software *)  to be used.

h) More information on EPIZOO  see  in www.cbox.cz/vaclavkouba and in author's articles published in:

   - Rev.sci.tech. Office International des Epizooties, 1994, 13 (3), 637-650

   - Bulletin of the World Health Organization, 1995, 73 (1), 77-83

   - Rev.sci.tech. Office International des Epizooties, 1997, 16 (3), 793-799.

j) EPIZOO can be started by going out from EPIZMETH and keying 'epizoo'.

k) The software may be freely copied.

-----------------------------------

*) Notes: Open a new file in WORD where the copied  parts to be pasted; place cursor on the upper  bar of EPIZOO ( EPIZMETH) window and press right mouse button; select EDIT - MARK; place cursor in the EPIZOO (or EPIZMETH) window left upper corner and  pressing left mouse button highlight the contents to be printed; place cursor on the upper EPIZOO (EPIZMETH) window  bar and press right mouse button; select EDIT - COPY to Enter; open the WORD file; locate cursor where the window contents  to be printed; select EDIT - PASTE; select FILE - PRINT.

 

     EPIZOO and EPIZMETH under MSDOS have been using full screen. Under WINDOWS they start using smaller part of the screen; for EPIZOO (EPIZMETH) window expanding into full screen following procedure to be used: place cursor on the upper  EPIZOO (EPIZMETH) window bar and press right mouse button; select: PROPERTIES – DISPLAY OPTION – FULL SCREEN – OK – APPLY PROPERTIES – SAVE  PROPERTIES for future windows with the same title – OK.

 

   Sources of EPIZOO software methodology:

Majority of EPIZOO methods are based on author's publications, mainly:

      Kouba V. - (1987): Epizootiología general. 2nda edición.  Edición Pueblo y Educación, Instituto del Libro, La Habana, 887 pp.

      Kouba V. - (1994): General Epizootiology. University of Veterinary  Sciences, Kosice, 214 pp.

      Kouba V. – (2004): Epizootiology Principles and Methods. Agriculture University, Prague, 231 pp.

 

Other bibliographical sources (referred in the subprogrammes):

1) Astudillo V.M.,Malaga H., Wanderley M. (1976).- Estadistica descriptiva  en salud animal. OSP, Centro Panamericano de Fiebre Aftosa, Rio de Janeiro.

2) Cannon R.M.,Roe R.T.(1982).- Livestock disease surveys: A field manual for  veterinarians. Australian Gvt.Publishing Service, Canberra.

3) Jenicek M.,Cleroux R. (1982).- Epidemiologie:Principes.Techniques.   Applications. Edisem, St.Hyacinthe, Quebec.

4) Kubankova V.,Hendl J. (1986).- Statistika pro zdravotniky.   Avicenum/Zdravotnicke nakladatelstvi, Praha.

5) Lon Poole (1982).- Programmi practici in BASIC. Edizione Italiana.  Grupo Editoriale Jackson, Milano.

6) MacDiarmid S.C.(1993).- Risk analysis and the importation of animals and  animal products. Rev.sci.tech.Off.int.Epiz.,12(4),1093-1107.

7) MacMahon B.,Pugh T.F.,Ipsen J. (1960).- Epidemiological Methods. Little,   Brown and Company, Boston, Toronto.

8) Martin S.W.,Meek A.H.,Willeberg P. (1987).- Veterinary epidemiology -   principles and methods. Ames, Iowa, Iowa State University Press.

9) Morley R.S.(1993).- A model for the assessment of the animal disease risk  associated with the importation of animals and animal products. Rev.sci.

  tech.Off.int.Epiz.,12(4),1055-1092.

10) Navarro R. Fierro (1987).- Introduccion a la bioestadistica. Analisis  de variables binarias. McGraw-Hill de Mexico.

11) Putt S.N.H. et al.(1987).- Veterinary epidemiology and economics in Africa,   International Livestock Centre for Africa, Addis Ababa.

12) Rose G., Barker D.J.P. (1990).- Epidemiology for the Uninitiated.  Latimer Trend & Co Ltd, Plymouth, Great Britain.

13) Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,   Mc Graw-Hill Inc., Hartford Graduate Center, USA.

14) Toma B. et al. (1999).- Applied veterinary epidemiology and the control   of disease in populations. AEEMA, Maisons-Alfort, France.

15) Yamane Taro (1979).- Elementary Sampling Theory. New York University,   Prentice-Hall, Engelwood Cliffs, NY, USA.

16) Col. (1995).- Manual for teaching basic veterinary epidemiology. ISZTA,   Teramo, Italy and WHO in cooperation with FAO.

 

                                                  

         M A I N    M  E  N  U    OF   INFORMATION ON 'EPIZOO' SUBPROGRAMMES

 

         1-Animal population - characteristics of health importance

         2-Animal population health/disease analysis - basic indicators

         3-Selected indicators of animal population health structures

         4-Selected indicators of epizootic process dynamics

         5-Selected indicators of animal disease risk assessment

         6-Consequences of animal population health and disease

         7-Investigations of animal population health situation

         8-Methods related to sampling in population investigations

         9-Selected aspects of animal population health programmes

         10-Cost and efficiency of animal population health programmes

         11-Complementary subprogrammes - I

         12-Complementary subprogrammes - II

         13-Annex I - Selected basic statistical methods

         14-Annex II - Other selected statistical and economic methods

     

 

        1-ANIMAL POPULATION - SELECTED CHARACTERISTICS OF HEALTH IMPORTANCE

       

        1-Animal population size and species structure

        2-Animal population categories (strata) structure

        3-Animal population territorial distribution

        4-Breeding/production conditions influencing animals distribution

        5-Ecological conditions influencing animal population distribution

        6-Selected indicators related to disease resistant animals

        7-Selected indicators related to disease susceptible animals

        8-Animal population production per animal, input, space and time

        9-Animal population dynamics - 'vertical movement'

        10-Estimation of animals number according to survival rates

        11-Estimation of number of wild animals (vertebrates+invertebrates)

        12-Estimation of animal population size based on capture/recapture

        13-Estimation of animal population size based on average density

 

1.1-ANIMAL POPULATIONS SIZE AND SPECIES STRUCTURE

(applicable also on the etiological agents' vectors and reservoirs)

INPUT DATA:

     animal populations - P$            place (territory, land, sector, etc.) - PL$                          time - TI$

     number of evaluated animal species - N

FOR I=1 TO N

    I:           species -  S$(I)

                 animals - U#(I)

SU = sum of U#(I)

       SPECIES    STRUCTURE     OF     ANIMAL    POPULATION

    Species              Absolute     Proportion     Percentage

                                Number

    S$(I)                      U#(I)            U#(I)/SU     (U#(I)/SU)*100

    T o t a l                 SU                1.000000      100.0000

 

1.2-ANIMAL POPULATION CATEGORIES (STRATA) STRUCTURE

  (according to age, sex, weight, breed, physiological stage, nutrition   status, immunity status, type/level of productivity, type of breeding, type   of exploitation, production stage, technology, concentration, etc.)

INPUT DATA:

     place - PL$; time - TI$

     animal species - SP$                  category according to - CA$

     number of subgroups within this category - N

FOR I=1 TO N

    I:          name of subgroup (category) -  SG$(I)

                number of animals - NA#(I)

SU# = sum of NA#(I)

       C A T E G O R Y   S T R U C T U R E   OF  ANIMAL  POPULATION

    Category                Number of       Proportion        Percentage

    Subgroup                Animals

    SG$(I)                        NA#(I)          NA#(I)/SU#    (NA#(I)/SU#)*100

    T o t a l                     SU#                1.000000           100.0000

 

1.3-ANIMAL POPULATION TERRITORIAL DISTRIBUTION

     This subprogramme calculates: animal population - territorial density and distribution

 INPUT DATA

     place (territory) - PL$ ; time - TI$

     animal species - SP$; category(ies) - CA$

     space measure unit - SU$

     number of data on space and animals - N

FOR I=1 TO N

     subterritory - TE$(I)

     size - TS#(I)

     number of animals - AN#(I)

SU1# = sum of TS#(I)

SU2# = sum of AN#(I)

    ANIMAL  P O P U L A T I O N  - TERRITORIAL  DENSITY  AND  DISTRIBUTION

 Subterritory    SU$       Number of        Average         Proportion        Percentage

                                         Animals             Density

 TE$(I)            TS#(I)       AN#(I)        AN#(I)/TS#(I)  AN#(I)/SU2#   (AN#(I)/SU2#)*100

 T o t a l          SU1#         SU2#            SU2#/SU1#        1.000000           100.0000

 

1.3-ANIMAL POPULATION TERRITORIAL DISTRIBUTION

     This subprogramme calculates:  farms - average number of animals and territorial distribution

INPUT DATA

     place (territory) - PL$ ; time - TI$

     animal species - SP$; category(ies) - CA$

     farm type - FT$

     number of data on space and animals - N

FOR I=1 TO N

     subterritory - TE$(I)

     number of farms - TS#(I)

     number of animals - AN#(I)

SU1# = sum of TS#(I)

SU2# = sum of AN#(I)

    F A R M S:  AVERAGE NUMBER OF ANIMALS  AND TERRITORIAL DISTRIBUTION

 Subterritory    Farms         Number of         Average         Proportion      Percentage

                          Animals                                 Number

 TE$(I)               TS#(I)        AN#(I)        AN#(I)/TS#(I)     TS#(I)/SU1#   (TS#(I)/SU1#)*100

 T o t a l            SU1#          SU2#             SU2#/SU1#          1.000000           100.0000

 

1.3-ANIMAL POPULATION TERRITORIAL DISTRIBUTION

     This subprogramme calculates:  animal population - simple territorial distribution

 INPUT DATA

     place (territory) - PL$ ; time - TI$

     animal species - SP$; category(ies) - CA$

     number of data on space and animals - N

FOR I=1 TO N

     subterritory - TE$(I)

     number of animals - AN#(I)

SU1# = sum of TS#(I)

SU2# = sum of AN#(I)

    ANIMAL  P O P U L A T I O N  -  TERRITORIAL   D I S T R I B U T I O N

Subterritory               Number of        Proportion            Percentage

                                     Animals

 TE$(I)                         AN#(I)           AN#(I)/SU2#      (AN#(I)/SU2#)*100

 T o t a l                        SU2#                1.000000                 100.0000

 

1.4-BREEDING/PRODUCTION CONDITIONS INFLUENCING ANIMALS DISTRIBUTION

  (animal breeding/production exploitation, technology, concentration, housing,  herd/flock/farm size, management, economic sector, etc.)

INPUT DATA:

     type of breeding/production conditions - EC$

     place - PL$; time - TI$

     criterion for subgrouping - CA$

     measure units (animals or others) - MU$

     number of evaluated subgroups - N

FOR I=1 TO N

     I:    names of subgroups - SG$(I)

           number of measure units - NA(I)

SU = sum of NA(I)

  BREEDING/PRODUCTION CONDITIONS INFLUENCING DISTRIBUTION OF ANIMALS

    Subgroup                 MU$            Proportion    Percentage

    SG$(I)                        NA(I)           NA(I)/SU     (NA(I)/SU)*100

    T o t a l                       SU              1.000000         100.0000

 

1.5-ECOLOGICAL CONDITIONS INFLUENCING ANIMALS DISTRIBUTION

  [atmospherical, geospherical, hydrospherical and biospherical  (flora, fauna) factors, hygiene, etc.]

INPUT DATA:

     type of ecological conditions - EC$

     place - PL$; time - TI$

     criterion for subgrouping - CA$

     ecological conditions measure units - MU$

     number of evaluated subgroups - N

FOR I=1 TO N

     I:    names of subgroups - SG$(I)

           number of measure units - NA(I)

SU = sum of NA(I)

   ECOLOGICAL CONDITIONS INFLUENCING ANIMAL POPULATION DISTRIBUTION

    Subgroup                 MU$            Proportion    Percentage

    SG$(I)                        NA(I)            NA(I)/SU     (NA(I)/SU)*100

    T o t a l                      SU                 1.000000        100.0000

 

1.6-SELECTED INDICATORS RELATED TO DISEASE RESISTANT ANIMALS

INPUT DATA:

     species - SP$; category(ies) - CA$

     type/form of population resistance - RE$

     place - LU$

     Do you want information on point prevalence at a given moment (m)  or indicators related to a given period (p) ? m

     time-moment - TI$

     total number of animals existing at the given moment          -  A

     number of resistant animals existing at the given moment   -  ER

     RESULT:

     Point prevalence rate of resistant animals        =   ER/A   =   (ER/A)*100  %

 

1.6-SELECTED INDICATORS RELATED TO DISEASE RESISTANT ANIMALS

INPUT DATA:

     species - SP$; category(ies) - CA$

     type/form of population resistance - RE$

     place - LU$

     Do you want information on point prevalence at a given moment (m) or indicators related to a given period (p) ? p

     time-period - TI$

     total number of animals existing at the beginning of the period  -  D

     total number of animals existing in the period  -  B

     average number of animals in the period   -  C

     number of resistant animals existing  at the beginning of the period    -  DR

     number of resistant animals existing in the period    -  FR

     average number of resistant animals in the period     -  GR

     number of new resistant animals in the period            -  HR

     number of extinct resistant animals (dead+slaughtered+removed+with immunity end) in the period   -  IR

RESULT:

     Initial point prevalence rate of resistant animals       =   DR/D

     Period prevalence rate of resistant animals                =   FR/B

     Average prevalence rate of resistant animals            =   GR/C

     Incidence rate of resistant animals to existing total  =   HR/B

     Incidence rate of resistant animals to average total  =   HR/C

     Incidence rate of resistant animals to initial total      =   HR/D

     Extinction rate of resistant animals to existing total  =   IR/B

     Extinction rate of resistant animals to average total  =   IR/C

     Extinction rate of resistant animals to initial total      =   IR/D

 

1.7-SELECTED INDICATORS RELATED TO DISEASE SUSCEPTIBLE ANIMALS

INPUT DATA:

     species - SP$; category(ies) - CA$

     type of population susceptibility - SU$

     place - LU$

     Do you want information on point prevalence at a given moment (m)  or indicators related to a given period (p) ? m

     time-moment - TI$

     total number of animals existing at the given moment        -  A

     number of susceptible animals existing at the given moment  -  ES

RESULT:

     Point prevalence rate of susceptible animals       =   ES/A   =   (ES/A)*100  %

 

1.7-SELECTED INDICATORS RELATED TO DISEASE SUSCEPTIBLE ANIMALS

INPUT DATA:

     species - SP$; category(ies) - CA$

     type of population susceptibility - SU$

     place - LU$

     Do you want information on point prevalence at a given moment (m)  or indicators related to a given period (p) ? p

     time-period - TI$

     total number of animals existing at the beginning of the period -  D

     total number of animals existing in the period             -  B

     average number of animals in the period                    -  C

     number of susceptible animals existing at the beginning of the period -  DS

     number of susceptible animals existing in the period       -  FS

     average number of susceptible animals in the period        -  GS

     number of new susceptible animals in the period            -  HS

     number of extinct susceptible animals (dead+slaughtered+removed+immunized) in the period -  IS

RESULT:

     Initial point prevalence rate of susceptible animals        =   DS/D

     Period prevalence rate of susceptible animals                 =   FS/B

     Average prevalence rate of susceptible animals             =   GS/C

     Incidence rate of susceptible animals to existing total   =   HS/B

     Incidence rate of susceptible animals to average total   =   HS/C

     Incidence rate of susceptible animals to initial total       =   HS/D

     Extinction rate of susceptible animals to existing total   =   IS/B

     Extinction rate of susceptible animals to average total  =   IS/C

     Extinction rate of susceptible animals to initial total      =   IS/D

 

1.8-ANIMAL POPULATION AVERAGE PRODUCTION PER ANIMAL, INPUT, SPACE AND TIME

     This subprogramme calculates average animal production per:   1) animal 

INPUT DATA:

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     total number of animals - AN

     number of data to be processed - N

FOR I=1 TO N

    I:       product, measure units, total quantity - P$(I),U$(I),Q#(I)

   A N I M A L  P O P U L A T I O N   A V E R A G E    P R O D U C T I O N

     Product            Measure        Quantity            Average

                                 Units                                      per Animal

      P$(I)                   U$(I)              Q#(I)               Q#(I)/AN

 

1.8-ANIMAL POPULATION AVERAGE PRODUCTION PER ANIMAL, INPUT, SPACE AND TIME

     This subprogramme calculates average animal production per:   2) input 

INPUT DATA:

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     animal product - PR$

     product measure units - MU$

     total quantity of product - Q#

     number of data to be processed - N

FOR I=1 TO N

    I:      input type, measure units, input value - IN$(I),U$(I),Q#(I)

   A N I M A L  P O P U L A T I O N   A V E R A G E    P R O D U C T I O N

      Input         Input          Input          Average Input       Average MU$

     Type          Unit           Quantity       Units per MU$     per Input Unit

     IN$(I)         U$(I)          Q#(I)                 Q#(I)/Q#              Q#/Q#(I)

 

1.8-ANIMAL POPULATION AVERAGE PRODUCTION PER ANIMAL, INPUT, SPACE AND TIME

     This subprogramme calculates average animal production per:  3) space     

INPUT DATA:

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     animal product - PR$

     product measure units - MU$

     space measure unit - U$

     number of data to be processed - N

FOR I=1 TO N

    I:      place, size, total product quantity - IN$(I),S(I),Q#(I)

T# = sum of Q#(I)

S = sum of S(I)

   A N I M A L  P O P U L A T I O N   A V E R A G E    P R O D U C T I O N

  Place            Size        Quantity      Average MU$

                        U$        of Product        per U$             Proportion           %

  IN$(I)           S(I)            Q#(I)         Q#(I)/S(I)            Q#(I)/T#       (Q#(I)/T#)*100

  T o t a l        S                  T#              T#/S                  1.0000            100.0000

 

1.8-ANIMAL POPULATION AVERAGE PRODUCTION PER ANIMAL, INPUT, SPACE AND TIME

    This subprogramme calculates average animal production per:  4) time

INPUT DATA:

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     animal product - PR$

     product measure units - MU$

     time measure unit  - U$

     number of data to be processed - N

FOR I=1 TO N

    I:         subperiod, duration, total product quantity - IN$(I),S(I),Q#(I)

T# = sum of Q#(I)

S = sum of S(I)

   A N I M A L  P O P U L A T I O N   A V E R A G E    P R O D U C T I O N

  Superiod         Duration    Quantity      Average MU$

                               U$         of Product          per U$           Proportion           %

  IN$(I)                  S(I)             Q#(I)            Q#(I)/S(I)          Q#(I)/T#      (Q#(I)/T#)*100

  T o t a l                 S                T#                  T#/S                  1.0000         100.0000

 

1.9-ANIMAL POPULATION DYNAMICS - 'VERTICAL MOVEMENT'

  This subprogramme calculates : 1) combination of the numbers of existing, new and extinct animals

INPUT DATA

     place, time-period - PL$,TI$

     species, category(ies) - SP$,CA$

Question about indicator to be calculated to be left without the answer ! The other three data must be given !

     number of animals existing at the beginning of the period - AO#

     number of new born and introduced animals in the period   - AN#

     number of extinct (dead+slaughtered+removed) animals  in the period - AE#

     number of animals existing at the end of the period       - AF#

RESULT:

    Number of animals at the end of the period                 =  AO#+AN#-AE#

    Number of animals at the beginning of the period      =  AF#-AN#+AE#

    Number of new animals in the period                            =  AF#-AO#+AE#

    Number of extinct animals in the period                        =  AO#-AF#+AN#

    Number of animals existing in the period                      =  AO#+AN#

    Number of animals existing in the period                      =  (AF#-AN#+AE#)+AN#

    Number of animals existing in the period                      =  (AF#-AO#+AE#)+AO#

 

1.9-ANIMAL POPULATION DYNAMICS - 'VERTICAL MOVEMENT'

  This subprogramme calculates :  2) animal population replacement (restocking) rates

INPUT DATA

     place, time-period - PL$,TI$

     species, category(ies) - SP$,CA$

     number of animals existing at the beginning of the period - AO

     number of new born animals in the period - AB

     number of animals introduced in the period  - AI

     number of animals existing in the period - AP

     average number of animals existing in the period  - AA

     duration (in days) of one population reproduction cycle  - RC

RESULT:

      Replacement (restocking) rate to initial number of animals       =  (AB+AI)/AO

      Replacement (restocking) rate  to existing number of animals  =  (AB+AI)/AP

      Replacement (restocking) rate  to average number of animals  =  (AB+AI)/AA

      Annual proportion of reproduction cycle                                    =  365/RC

 

1.9-ANIMAL POPULATION DYNAMICS - 'VERTICAL MOVEMENT'

  This subprogramme calculates : 3) estimate of number of animals within one regular generation cycle

INPUT DATA

     place, time-period - PL$,TI$

     species, category(ies) - SP$,CA$

     number of animals at the beginning of the period  - AO

     duration (in days) of one regular generation   (replacement) cycle  - RC

     duration (in days) between the initial and evaluated  days within the generation cycle  - PX

RESULT:

   Estimated number of animals existing at the beginning  and still remaining +/  at the evaluated day    =  AO*(1-PX/RC)

   +/ If not removed prematurely and in absence of migration.

 

1.9-ANIMAL POPULATION DYNAMICS - 'VERTICAL MOVEMENT'

  This subprogramme calculates :  4) estimate of number of animals within one regular   c o n t i n u i n g  production/breeding cycle

INPUT DATA

     place, time-period - PL$,TI$

     species, category(ies) - SP$,CA$

     number of animals at the beginning of the period              - AOP

     duration (in days) of one regular  c o n t i n u i n g  production/breeding (replacement) cycle   - PPC

     duration (in days) between the initial and evaluated  days within the production/breeding cycle   - PPX

RESULT:

   Estimated number of animals existing at the beginning  and still remaining +/  at the evaluated day    =  AOP*(1-PPX/PPC)

   +/ If not removed prematurely and in absence of migration.

 

1.9-ANIMAL POPULATION DYNAMICS - 'VERTICAL MOVEMENT'

  This subprogramme calculates :  5) addition and withdrawal rates of animal population (applicable also on import/export of animals)

  INPUT DATA

     place, time-period - PL$,TI$

     species, category(ies) - SP$,CA$

     total number of animals existing at the beginning of the period    - D

     total number of animals existing in the period    - B

     average number of animals existing in the period    - C

     number of new (born+introduced) animals in the period   - H

     number of extinct animals (dead+slaughtered+removed)  in the period   - I

RESULT:

       Addition rate of animals to existing total                  =   H/B

       Addition rate of animals to average total                  =   H/C

       Addition rate of animals to initial total                      =   H/D

       Withdrawal rate of animals to existing total             =   I/B

       Withdrawal rate of animals to average total             =   I/C

       Withdrawal rate of animals to initial total                 =   I/D

       Balance between additions and withdrawals           =   H-I

       Ratio of animal population additions/withdrawals  =   H/I

       Ratio of animal population withdrawals/additions  =   I/H

 

1.9-ANIMAL POPULATION DYNAMICS - 'VERTICAL MOVEMENT'

  This subprogramme calculates :  6) simple model of animal population growth

INPUT DATA

     place, time-period - PL$,TI$

     species, category(ies) - SP$,CA$

     number of animals at the beginning of the period   - AI

     number of planned subperiods - N

FOR I=1 TO N

I:   subperiod - SU$(I)

     supposed number of new (born+introduced) animals - IN(I)

     supposed number of extinct (dead+slaughtered+removed) animals - EX(I)

     SIMPLE  MODEL  FOR  A N I M A L   P O P U L A T I O N   G R O W T H

IN = cumulative sum of IN(I)

EX = cumulative sum of EX(I)

       Subperiod         New            Extinct         FINAL

      SU$(I)                 IN(I)            EX(I)          (AI+IN-EX)

      Total                   IN                EX              (AI+IN-EX)

 

1.10-ESTIMATION OF NUMBER OF ANIMALS ACCORDING TO SURVIVAL RATES    (after a series of subperiods; in absence of migration)

INPUT DATA:

     place, period - LU$,PE$

     species, category(ies) - ES$,CA$

     total number of animals at the beginning - A

     number of subperiods - N

FOR I=1 TO N

     names of subperiods - NA$(I)

     coefficients of survival probability in form of proportion, (number between 0 and 1):    X(I)

R = cumulative X(I) multiples

    ESTIMATION OF  NUMBERS OF ANIMALS ACCORDING TO  S U R V I V A L  RATES

    From the initial number A  of animals after N subperiods  it can be estimated about  (R*A) surviving animals.

S = partial cumulative sum of X(I) multiples

       Subperiod                Survival      Cumulative     Animals

                                             Rate          Survival        at the End

                                                                  Rate           of Subperiod

       NA$(I)                          X(I)               S                    S*A

       T o t a l                                               R                    R*A

 

1.11-ESTIMATES OF THE NUMBER OF WILD ANIMALS (VERTEBRATES AND INVERTEBRATES)  (rough estimates based on territory population samples investigations)

INPUT DATA:

     animal species - SP$

     territory, time - PL$,TI$

     surface measure units - MU$

     total territory in surface measure units - NT

     number of selected representative subterritories - N

FOR I=1 TO N

     subterritory names - NA$(I)

     total size surface units - SU(I)

     investigated surface size - IN(I)

     number of found animals - PO(I)

T = sum of ((SU(I)*(PO(I)/IN(I)))

SU = sum of SU(I)

IN = sum of IN(I)

PO = sum of PO(I)

 E S T I M A T E S   O F  T H E   N U M B E R   O F   W I L D   A N I M A L S

                              S u r f a c e  in MU$                                         A    n    i    m    a    l    s

 Selected         ------------------------------------          --------------------------------------------------------------------------------------

 Represent.      Total      Investi-   Terri-               Found   Average      Estimate                                Propor-

 Sub-                                gated       tory Pro-                       per MU$      of Total                                 tion

 territory                                           portion          

  NA$(I)           SU(I)       IN(I)      IN(I)/SU(I)       PO(I)     PO(I)/IN(I)  ((SU(I)*(PO(I))/IN(I))    ((PO(I)*SU(I))/IN(I))/T

 T O T A L      SU           IN             IN/SU             PO            PO/IN             T                                          1.0000

If this average per MU$   is applied on the total territory of NT MU$,  then it can be estimated about  NT*(PO/IN)  animals SP$ living there.

Do you want to estimate the number of specific disease agents  reservoirs among the animals of the above species, yes(y) or no(n) ? y

ADDITIONAL INPUT DATA:

specific disease - DI$

estimated percentage of animals reservoirs (vectors) - P

RESULT:

If the estimated percentage is applied on the total territory,  then it can be estimated  about (NT*(PO/IN)*P/100)   SP$ - reservoirs of DI$ agents living there.¨

 

1.12-ESTIMATION OF ANIMAL POPULATION SIZE BASED ON CAPTURE/RECAPTURE                                                                (Ref.: Cannon,Roe)

  in the absence of migration      (This capture-recapture sampling scheme is applicable on feral animals or where mustering is difficult. )                                                                                                 

INPUT DATA:

     species - SP$

     territory, time - PL$,TI$

     total number of captured-marked and released animals         - D

     total number of animals captured  a f t e r   a   t i m e   suitable to allow for mixing of the population,  but which would preclude many deaths/births    - N

     number of recaptured animals of the original capture         - X

RESULT:

     Very rough estimation of the population size = about D*(N/X) animals

 

1.13-ESTIMATION OF ANIMAL POPULATION SIZE BASED ON AVERAGE DENSITY

    This subprogramme calculates animal population size for:  1) multiform territory knowing the surface size

INPUT DATA:

     place, time - PL$,TI$

     species - SP$

     surface measure unit - SMU$

     average density of animals per one surface measure unit - AD

     total territory size in surface measure units           - TS

RESULT:

     Rough estimation of the population size  =  AD*TS animals

 

1.13-ESTIMATION OF ANIMAL POPULATION SIZE BASED ON AVERAGE DENSITY

    This subprogramme calculates animal population size for: 2) circular territory knowing the radius

INPUT DATA:

     place, time - PL$,TI$

     species - SP$

     surface measure unit - SMU$

     average density of animals per one surface measure unit - AD

     length measure units - LU$

     radius in length measure units  - RA

RESULT:

PI=3.1415926535

     Territory size                           =  PI*RA^2   SMU$

     Rough estimation of the population size  =  AD*PI*RA^2  animals

 

1.13-ESTIMATION OF ANIMAL POPULATION SIZE BASED ON AVERAGE DENSITY

    This subprogramme calculates animal population size for:  3) square territory knowing the side length

INPUT DATA:

     place, time - PL$,TI$

     species - SP$

     surface measure unit - SMU$

     average density of animals per one surface measure unit - AD

     length measure units   - LU$

     length of square side in length measure units  - LS

RESULT:

     Territory size                           =  LS^2   SMU$

     Rough estimation of the population size  =  AD*LS^2 animals

 

1.13-ESTIMATION OF ANIMAL POPULATION SIZE BASED ON AVERAGE DENSITY

    This subprogramme calculates animal population size for:  4) oblong territory knowing the length and width

INPUT DATA:

     place, time - PL$,TI$

     species - SP$

     surface measure unit - SMU$

     average density of animals per one surface measure unit - AD

     length measure units   - LU$                oblong length in measure units   - OL

     oblong width in measure units  - OW

RESULT:

     Territory size                           =  OL*OW   SMU$

     Rough estimation of the population size  =  AD*OL*OW  animals

 

1.13-ESTIMATION OF ANIMAL POPULATION SIZE BASED ON AVERAGE DENSITY

    This subprogramme calculates animal population size for:  5) volume space knowing the length, width  and depth (height)

 INPUT DATA:

     place, time - PL$,TI$

     species - SP$

     volume measure unit - VMU$

     average density of animals per one volume measure unit - AD

     length measure units  - LU$

     oblong length, oblong width in measure units  - OL,OW

     depth (height) in measure units  - DE

RESULT:

     Volume size                             =  OL*OW*DE   VMU$

     Rough estimation of the population size  =  AD*OL*OW*DE  animals

 

 

   2-ANIMAL POPULATION HEALTH/DISEASE  ANALYSIS - BASIC INDICATORS SYSTEM

 

      1-General indicators for animal population health analysis

      2-Indicators of presence/absence of animal health phenomena

      3-Selected indicators of animal population health (disease free)

      4-Selected indicators of animal population morbidity

      5-Selected indicators of animal population viability (survival)

      6-Selected indicators of animal population mortality

      7-Selected indicators of animal disease nidality (focality)

      8-Selected indicators of animal disease territorial distribution

      9-Human/animal populations and zoonoses

 Recommendation: Small resulting values of the indicators to be multiplied

 by 100 (per 100 basic units), by 1000 (per 1000 basic units), etc.

 

2.1-GENERAL INDICATORS FOR ANIMAL POPULATION HEALTH ANALYSIS

INPUT DATA:

basic units (animals total, at risk, herds, flocks, farms, territory surface  units, product units, etc.)  - UB$

epi. units  (basic units with particular health related. characteristic, e.g. disease free, affected, etc.) - UE$

total number of basic units existing at the given moment  - A

number of epi. units existing at the given moment  - E

number of basic units existing at the beginning of the period - D

number of basic units existing in the period  - B

average number of basic units in the period  - C

number of epi. units at the beginning of the period   - DB

number of epi. units existing in the period   - F

average number of epi. units in the period  - G

number of new epi. units in the period   - H

number of extinct epi. units in the period  - I

RESULT:

     Point prevalence rate of epi. units                     =   E/A    =   E/A*100 %

     Initial point prevalence rate of epi. units          =   DB/D

     Period (interval) prevalence rate of epi. units  =   F/B

     Average prevalence rate of epi. units               =   G/C

     Incidence rate of epi. units to existing total     =   H/B

     Incidence rate of epi. units to average total     =   H/C

     Incidence rate of epi. units to initial total         =   H/D

     Extinction rate of epi. units to existing total     =   I/B

     Extinction rate of epi. units to average total     =   I/C

     Extinction rate of epi. units to initial total         =   I/D

 

2.2-SELECTED INDICATORS OF PRESENCE/ABSENCE DURATION   OF ANIMAL POPULATION HEALTH PHENOMENON

    1) animal health phenomenon (disease, measure,  environment factor, etc.) presence/absence relations

INPUT DATA:

     animal health phenomenon - FE$

     place, period - PL$,PE$

     total duration of presence of animal health phenomenon  - A

     total duration of absence of animal health phenomenon   - B

     number of periods of presence of animal health phenomenon   - C

     number of periods of absence of animal health phenomenon    - D

RESULTS:

E=A+B

    Average duration of presence of the phenomenon        =  A/C

    Average duration of absence of the phenomenon         =  B/D

    Time proportion of presence of the phenomenon          =  A/E

    Time proportion of absence of the phenomenon           =  B/E

    Ratio of periods with/without the phenomenon             =  A/B

    Ratio of periods without/with the phenomenon             =  B/A

 

2.2-SELECTED INDICATORS OF PRESENCE/ABSENCE DURATION  OF ANIMAL POPULATION HEALTH PHENOMENON        (according to Dr V. Astudillo)

    2) disease persistence (endemism)

INPUT DATA:

     Disease - DI$                      Place - PL$                                      Period - PE$

There is a need for data on chronological series of disease presence and absence durations during several years measured in months.

number of different durations of disease presence periods  - N1

number of different durations of disease absence periods   - N2

FOR I=1 TO N1    event.    FOR I=1 TO N2

duration of presence (in months), frequency                - PR(I),F1(I)

duration of absence (in months), frequency                 - AB(I),F2(I)

RESULTS:

S1 = sum of (PR(I)*F1(I));         S2 = sum of (AB(I)*F2(I))

T1 = sum of F1(I);                       T2 = sum of F2(I)

                        Total number of months               = S1+S2

Y=S1/T1; OM1=1/Y

                        Disease presence omega               = OM1

X=S2/T2; OM2=1/X

                        Disease absence omega                = OM2

OM=OM1+OM2

                        Sum of presence and absence omegas   = OM

E=OM2/OM

                        Disease persistence index  (endemism index)      =  E  =  E*100 %

 

2.3-SELECTED INDICATORS OF ANIMAL POPULATION HEALTH (DISEASE FREE)

related to  d i s e a s e   f r e e (normal, unaffected, pathogen free, non diseased) animals; salubrity, healthiness, wholesomeness, etc.

INPUT DATA:

     type/form of animal population health  (general - crude or particular - cause/attribute specific - SA$

     place, period - PL$,PE$

     total number of animals existing at the given moment  - A

     number of healthy animals existing at the given moment  - E

     total number of animals at the beginning of the period  - D

     total number of animals existing in the period  - B

     average number of animals in the period - C

     number of healthy animals at the beginning of the period - J

     number of healthy animals existing in the period   - F

     average number of healthy animals in the period  - G

     number of new healthy animals in the period   - H

     number of extinct healthy animals (slaughtered, removed, diseased)  in the period  - I

RESULTS:

     Point prevalence rate of healthy animals                  =   E/A   =   E/A*100 %

     Initial point prevalence rate of healthy animals       =   J/D

     Period prevalence rate of healthy animals                =   F/B

     Average prevalence rate of healthy animals            =   G/C

     Incidence rate of healthy animals to existing total  =   H/B

     Incidence rate of healthy animals to average total  =   H/C

     Incidence rate of healthy animals to initial total      =   H/D

     Extinction rate of healthy animals to existing total  =   I/B

     Extinction rate of healthy animals to average total  =   I/C

     Extinction rate of healthy animals to initial total      =   I/D

 

Relations of the numbers of healthy animals  to those with other epi. characteristics:

INPUT DATA

     number of healthy animals at the given time  -   HT

     number of diseased animals at the given time  -   DT

     number of intrafocal animals at the given time  -   FT

     number of animals at risk at the given time   -   TT

     number of resistant animals at the given time  -   RT

     number of susceptible animals at the given time   -   ST

     number of investigated animals at the given time   -   IT

RESULTS:

     Ratio healthy animals per diseased one               =   HT/DT

     Ratio diseased animals per healthy one               =   DT/HT

     Ratio healthy animals per intrafocal one              =   HT/FT

     Ratio intrafocal animals per healthy one              =   FT/HT

     Ratio healthy animals per one at risk                    =   HT/TT

     Ratio animals at risk per healthy one                    =   TT/HT

     Ratio healthy animals per resistant one               =   HT/RT

     Ratio resistant animals per healthy one               =   RT/HT

     Ratio healthy animals per susceptible one          =   HT/ST

     Ratio susceptible animals per healthy one          =   ST/HT

     Ratio healthy animals per investigated one        =   HT/IT

     Ratio investigated animals per healthy one        =   IT/HT

 

2.4-SELECTED INDICATORS OF ANIMAL POPULATION MORBIDITY

    This subprogramme calculates indicators related to diseased (unhealthy,  affected, infected, invaded, abnormal) animals, clinical cases, etc. :

      1) total population point prevalence rate at a given moment

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

     total number of animals existing at the given moment   - A

     number of diseased animals existing at the given moment  - J

     number of diseased animals with clinical symptoms  existing at the given moment   - Z

RESULTS:

     Point prevalence rate of diseased animals                            =   J/A

     Point prevalence rate of clinically diseased animals           =   Z/A

     Point prevalence rate of subclinically diseased animal      =   (J-Z)/A

     Proportion of clinically diseased animals                             =   Z/J

     Proportion of subclinically diseased animals                       =   (J-Z)/J

     Ratio of animals diseased clinically per subclinically one  =   Z/(J-Z)

     Ratio of animals diseased subclinically per clinically one  =   (J-Z)/Z

 

2.4-SELECTED INDICATORS OF ANIMAL POPULATION MORBIDITY

    This subprogramme calculates indicators related to diseased (unhealthy,  affected, infected, invaded, abnormal) animals, clinical cases, etc. :

      2) total population morbidity related to a given period

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

     total number of animals existing  at the beginning of the period  - D

     total number of animals existing in the period  - B

     average number of animals existing in the period - C

     number of diseased animals at the beginning of the period  - E

     number of diseased animals existing in the period  - F

     average number of diseased animals in the period  - G

     number of new diseased animals in the  period  - H

     number of extinct diseased animals (dead+slaughtered+removed+recovered) in the period  - I

RESULTS:

     Initial point prevalence rate of diseased animals         = E/D

     Period prevalence rate of diseased animals                  = F/B

     Average prevalence rate of diseased animals              = G/C

 

     Incidence rate of diseased animals to existing total    = H/B

     Incidence rate of diseased animals to average total    = H/C

     Incidence rate of diseased animals to initial total        = H/D

 

     Extinction rate of diseased animals to existing total    = I/B

     Extinction rate of diseased animals to average total    = I/C

     Extinction rate of diseased animals to initial total        = I/D

 

Information on the relations of the numbers of diseased animals to those with other epi. characteristics:

INPUT DATA:

     number of diseased animals at the given time  - DT

     number of healthy animals at the given time  - HT

     number of intrafocal animals at the given time  - FT

     number of animals at risk at the given time - TT

     number of resistant animals at the given time - RT

     number of susceptible animals at the given time  - ST

     number of investigated animals at the given time - IT

RESULTS:

     Ratio of diseased/healthy animals           =   DT/HT

     Ratio of healthy/diseased animals           =   HT/DT

     Ratio of diseased/intrafocal animals        =   DT/FT

     Ratio of in intrafocal/diseased animals   =   FT/DT

     Ratio of diseased/at risk animals             =   DT/TT

     Ratio of at risk/diseased animals             =   TT/DT

     Ratio of diseased/resistant animals         =   DT/RT

     Ratio of resistant/diseased animals         =   RT/DT

     Ratio of diseased/susceptible animals    =   DT/ST

     Ratio of susceptible/diseased animals    =   ST/DT

     Ratio of diseased/investigated animals   =   DT/IT

     Ratio of investigated/diseased animals   =   IT/DT

 

2.4-SELECTED INDICATORS OF ANIMAL POPULATION MORBIDITY

    This subprogramme calculates indicators related to diseased (unhealthy,  affected, infected, invaded, abnormal) animals, clinical cases, etc. :

      1) total population point prevalence rate at a given moment

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

     total number of animals at specific risk at the beginning of intrafocal exposure  - T

     total number of animals that develop disease  during total period of specific epizootic  - S

     number of animals that develop disease during initial stage - IS

RESULTS:

     Specific disease attack rate (case rate)             =   S/T   = (S/T)*100 %

     Specific disease initial stage attack rate           =   IS/T  = (IS/T)*100 %

     Specific disease post-initial stage attack rate  (secondary attack rate)    =   (S-IS)/T   = (S-IS/T)*100 %

     Proportion of initial stage attack rate                =   IS/S

     Proportion of post-initial stage attack rate       =   (S-IS)/S

     Ratio initial/post-initial stage attack rates        =   (S-IS)/IS

     Ratio post-initial/initial stage attack rates        =   IS/(S-IS)

 

2.4-SELECTED INDICATORS OF ANIMAL POPULATION MORBIDITY

      2) total population morbidity related to a given period

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

     total number of animals existing  at the beginning of the period          - D

     total number of animals existing in the period              - B

     average number of animals existing in the period            - C

     number of diseased animals at the beginning of the period       - E

     number of diseased animals existing in the period           - F

     average number of diseased animals in the period            - G

     number of new diseased animals in the  period               - H

     number of extinct diseased animals (dead+slaughtered+removed+recovered) in the period                        - I

RESULTS:

     Initial point prevalence rate of diseased animals         = E/D

     Period prevalence rate of diseased animals                  = F/B

     Average prevalence rate of diseased animals              = G/C

     Incidence rate of diseased animals to existing total    = H/B

     Incidence rate of diseased animals to average total    = H/C

     Incidence rate of diseased animals to initial total        = H/D

     Extinction rate of diseased animals to existing total    = I/B

     Extinction rate of diseased animals to average total    = I/C

     Extinction rate of diseased animals to initial total        = I/D

 

Information on the relations of the numbers of diseased animals to those with other epi. characteristics:

INPUT DATA:

     number of diseased animals at the given time     - DT

     number of healthy animals at the given time      - HT

     number of intrafocal animals at the given time   - FT

     number of animals at risk at the given time      - TT

     number of resistant animals at the given time    - RT

     number of susceptible animals at the given time  - ST

     number of investigated animals at the given time - IT

RESULTS:

     Ratio of diseased/healthy animals           =   DT/HT

     Ratio of healthy/diseased animals           =   HT/DT

     Ratio of diseased/intrafocal animals        =   DT/FT

     Ratio of in intrafocal/diseased animals   =   FT/DT

     Ratio of diseased/at risk animals             =   DT/TT

     Ratio of at risk/diseased animals             =   TT/DT

     Ratio of diseased/resistant animals        =   DT/RT

     Ratio of resistant/diseased animals        =   RT/DT

     Ratio of diseased/susceptible animals   =   DT/ST

     Ratio of susceptible/diseased animals   =   ST/DT

     Ratio of diseased/investigated animals  =   DT/IT

     Ratio of investigated/diseased animals  =   IT/DT

 

2.4-SELECTED INDICATORS OF ANIMAL POPULATION MORBIDITY

       3) specific transmissible disease attack rates (intrafocal incidence)

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

     total number of animals at specific risk  at the beginning of intrafocal exposure       - T

     total number of animals that develop disease during total period of specific epizootic             - S

     number of animals that develop disease during initial stage - IS

RESULTS:

     Specific disease attack rate (case rate)             =   S/T   = (S/T)*100 %

     Specific disease initial stage attack rate           =   IS/T  = (IS/T)*100 %

     Specific disease post-initial stage attack rate  (secondary attack rate)      =   (S-IS)/T  = (S-IS/T)*100 %

     Proportion of initial stage attack rate                =   IS/S

     Proportion of post-initial stage attack rate       =   (S-IS)/S

     Ratio initial/post-initial stage attack rates        =   (S-IS)/IS

     Ratio post-initial/initial stage attack rates        =   IS/(S-IS)

 

2.4-SELECTED INDICATORS OF ANIMAL POPULATION MORBIDITY

      4) proportional specific disease morbidity rate

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

     number of all diseased animals at a given time              - Y

     number of animals diseased due specific cause(s) at a given time        - W

RESULT:

     Proportional specific disease morbidity rate   =   W/Y   = (W/Y)*100 %

 

2.4-SELECTED INDICATORS OF ANIMAL POPULATION MORBIDITY

      5) morbidity indicators related to animals at risk (exposed)

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

     total number of animals at risk existing at the given moment    - A

     number of diseased animals at risk existing at the given moment - J

    total number of animals at risk existing at the beginning of the period  - D

    total number of animals at risk existing in the period           - B

    average number of animals at risk existing in the period         - C

    number of diseased animals at risk at the beginning of the period- E

    number of diseased animals at risk existing in the period        - F

    average number of diseased animals at risk in the period         - G

    number of new diseased animals at risk in the  period            - H

    number of extinct (dead+slaughtered+removed+recovered) diseased animals at risk in the period      - I

RESULTS:

     Initial point prevalence rate of diseased animals at risk           =  E/D

     Period prevalence rate of diseased animals at risk                    =  F/B

     Average prevalence rate of diseased animals at risk                =  G/C

 

     Incidence rate of diseased animals at risk to existing total      =  H/B

     Incidence rate of diseased animals at risk to average total      =  H/C

     Incidence rate of diseased animals at risk to initial total          =  H/D

 

     Extinction rate of diseased animals at risk to existing total      =  I/B

     Extinction rate of diseased animals at risk to average total      =  I/C

     Extinction rate of diseased animals at risk to initial total           =  I/D

 

2.4-SELECTED INDICATORS OF ANIMAL POPULATION MORBIDITY

      6) animal-time incidence rate

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

Note: Animal-time = sum of individual units of time that the animals in the study population have been exposed to the conditions of interest

- in our case to specific disease etiological agents. Incidence density rate describes the average speed at which the event of interest occurs

per unit of animal-time at risk.

     animal-time unit (day, week, month, year, etc.)                - T$

     number of new events (diseased animals) in the period          - NDA

     number of animal-time units at risk in the period              - T

If absolute number of animal-time units at risk is unknown:

     average number of animals at risk during the period            - ANA

     period duration in time units                                  - PTU

RESULT:

T=ANA*PTU

     Animal-time incidence rate   (interval incidence density)   = NDA/T per T$ at risk

 

2.5-SELECTED INDICATORS OF ANIMAL POPULATION VIABILITY (SURVIVAL)

INPUT DATA:

     number of animals existing at the beginning of the period  -  G

     number of animals surviving at the end of the period       -  F

     number of animals existing in the period                   -  D

     number of animals born (live births) in the period         -  A

     number of naturally dead animals in the period             -  B

     number of animals slaughtered in the period                -  C

     number of females in reproductive age  existing in the period             -  E

     number of weaned new born animals in the period            -  H

     number of animals at the beginning of breeding period      -  I

     number of animals surviving to the end of breeding period  -  J

     number of animals at the beginning of fattening period     -  K

     number of animals surviving to the end of fattening period -  L

RESULTS:

     Animal population viability  index       =   A/(B+C)

     Animal population fertility rate            =   A/E

     Animal population natality rate (crude live birth rate)   =   A/D   =   (H/A)*100 %

     Animal survival-to-weaning rate (weaned new born animals rate)   =   H/A  =   (H/A)*100 %

     Animal population survival rate          =   F/G   =   (F/G)*100 %

     Breeding animals survival rate             =   J/I    =   (J/I)*100 %

     Fattening animals survival rate            =   L/K   =   (L/K)*100 %

 

2.6-SELECTED INDICATORS OF ANIMAL POPULATION MORTALITY

General-crude mortality / crude death rate (g) :

INPUT DATA:

Place, time, species - PL$,TI$,SP$

     total number of animals existing

                         at the beginning of the period          -  B

     total number of animals existing in the period              -  C

     average total number of animal in the period                -  D

     total number of naturally dead animals in the period        -  E

     total number of dead animals (slaughtered

                        and naturally dead) in the period        -  A

     total number of slaughtered animals in the period           -  H

     total number of diseased animals in the period              -  F

     total number of diseased animals naturally dead             -  G

RESULTS:

E=(A-H)            H=(A-E)            A=(H+E)

     Animal population total mortality rate to initial total         =   A/B

     Animal population total mortality rate to existing total     =   A/C

     Animal population total mortality rate to average total     =   A/D

     Animal population natural mortality rate to initial total     =   E/B

     Animal population natural mortality rate to existing total =   E/C

     Animal population natural mortality rate to average total =   E/D

     Slaughtered animals rate to initial total                                 =   H/B

     Slaughtered animals rate to existing total                             =   H/C

     Slaughtered animals rate to average total                             =   H/D

     Animal population crude case fatality rate                           =   G/F

  Note: 'total mortality' is based on a sum of dead and slaughtered animals;  'natural mortality' is based on naturally dead animals only.

 

2.6-SELECTED INDICATORS OF ANIMAL POPULATION MORTALITY

Cause/category specific death rate - specific disease mortality (s):

INPUT DATA:

Place, time, species - PL$,TI$,SP$

     total number of animals existing  at the beginning of the period          -  B

     total number of animals existing in the period              -  C

     average total number of animal in the period                -  D

     total number of naturally dead animals in the period        -  E

     number of specifically diseased animals existing  in the period      -  L

     number of naturally dead specifically diseased animals in the period      -  P

     number of slaughtered specifically diseased animals  in the period      -  Q

RESULTS:

   Specific disease total mortality rate to initial total                      =    (P+Q)/B

   Specific disease total mortality rate to existing total                  =    (P+Q)/C

   Specific disease total mortality rate to average total                  =    (P+Q)/D

   Specific disease natural mortality rate to initial total                  =    P/B

   Specific disease natural mortality rate to existing total              =    P/C

   Specific disease natural mortality rate to average total              =    P/D

   Specifically diseased slaughtered animals rate to initial total    =    Q/B

   Specifically diseased slaughtered animals rate to existing total =    Q/C

   Specifically diseased slaughtered animals rate to average total  =    Q/D

   Specific disease case fatality rate (lethality)                                 =    P/L

   Specific disease proportional case fatality rate                            =    P/E

 

2.6-SELECTED INDICATORS OF ANIMAL POPULATION MORTALITY

Neonatal mortality rate (n) :

INPUT DATA:

Place, time, species - PL$,TI$,SP$

     number of live animal births in the period                  -  LAB

     number of deaths of new born animals in the period          -  DNB

RESULTS:

    Animal population neonatal mortality rate         =     DNB/LAB   =     DNB/LAB*100 %

 

2.7-SELECTED INDICATORS OF ANIMAL DISEASE NIDALITY (FOCALITY)

INPUT DATA:

     place, time - PL$,TI$

     focal measure units (herds, flocks, farms, ranches, etc.)  -  FU$

     total number of territorial surface measure units          -  I

Do you want information on indicators related to a given moment (m)

                        or indicators related to a given period (p) ? m

     number of focal measure units existing at the given moment -  C

     number of foci existing at the given moment                -  D

     number of animals existing in foci at the given moment     -  AN

     number of herds at the given moment                        -  K

     number of diseased herds at the given moment               -  L

     number of animals existing in diseased herds               -  HF

RESULTS:

    Point prevalence rate of foci                                 =    D/C    =    D/C*100 %

    Average number of intrafocal animals  at the given moment      =    AN/D

    Point prevalence rate of diseased herds             =    L/K  =    L/K*100 %

    Average number of animals in diseased herds  =    HF/L

    Average density of foci per TU$                          =    D/I

    Average density of diseased herds per TU$      =    L/I

 

2.7-SELECTED INDICATORS OF ANIMAL DISEASE NIDALITY (FOCALITY)

INPUT DATA:

     place, time - PL$,TI$

     focal measure units (herds, flocks, farms, ranches, etc.)  -  FU$

     total number of territorial surface measure units          -  I

Do you want information on indicators related to a given moment (m)

                        or indicators related to a given period (p) ? p

     number of focal measure units existing at the beginning of the period     -  B

     number of foci existing at the beginning of the period     -  BB

     number of focal measure units existing in the period       -  E

     number of foci existing in the period                      -  F

     average number of focal measure units in the period        -  AM

     average number of foci in the period                       -  AF

     number of new foci in the period                           -  G

     number of extinct foci in the period                       -  H

     number of animals existing in foci in the period           -  AP

RESULTS:

     Initial point prevalence rate of foci          =    BB/B

     Period prevalence rate of foci                   =    F/E

     Average prevalence rate of foci               =    AF/AM

     Incidence rate of foci                                 =    G/E

     Extinction rate of foci                                 =    H/E

     Average density of foci per TU$             =    F/I

     Average number of intrafocal animals in the given period  =   AP/F

 

2.8-SELECTED INDICATORS OF ANIMAL DISEASE TERRITORIAL DISTRIBUTION

(villages, districts, regions, provinces, counties, countries, etc.)

INPUT DATA:

     place, time - PL$,TI$

     surface measure units   -    SU$

     total number of surface measure units of the territory  -  B

     affected zones size existing at the given moment        -  D

     number of animals existing in affected zones  at a given moment    -  AN

     number of surface units of affected zones  at the beginning of the period  -  S

     number of surface units of affected zones existing in the period      -  T

     average number of measure units of affected zones in the period      -  V

     number of surface units  of new affected zones in the period      -  Y

     number of surface units of extinct affected zones (become free) in the period      -  W

RESULTS:

     Point prevalence rate of affected zones                =   D/B   =   D/B*100 %

     Average number of animals in affected zones  per surface unit      =   AN/D

     Initial point prevalence rate of affected zones     =   S/B

     Period prevalence rate of affected zones              =   T/B

     Average prevalence rate of affected zones          =   V/B

     Incidence rate of affected zones                             =   Y/B

     Extinction rate of affected zones (recovery rate)  =   W/B

 

2.9-HUMAN/ANIMAL POPULATIONS AND ZOONOSES

  This subprogramme provides information on:  1) human population density and distribution

INPUT DATA

    place, time - PL$,TI$

    space measure units - SU$

    number of data - N

FOR I=1 TO N

    I:        subterritory  - TE$(I)          size   - TS(I)             persons   - AN(I)

     SU1 = sum of TS(I)        SU2 = sum of AN(I)

  H U M A N    P O P U L A T I O N  - TERRITORIAL  DENSITY  AND  DISTRIBUTION

  Subterritory    SU$         Number of     Average         Proportion        Percentage

                                           Inhabitants     Number           of Total            of Total

  TE$(I)              TS(I)       AN(I)            AN(I)/TS(I)       AN(I)/SU2   (AN(I)/SU2)*100

  T o t a l            SU1         SU2                SU2/SU1          1.000000          100.0000

 

2.9-HUMAN/ANIMAL POPULATIONS AND ZOONOSES

  This subprogramme provides information on:  2) human population categories structure

INPUT DATA

    place, time - PL$,TI$

    number of data - N

FOR I=1 TO N

    I:      category      - TE$(I)          persons  - AN(I)

     SU2 = sum of AN(I)

     H U M A N   P O P U L A T I O N   C A T E G O R Y   STRUCTURE

  Category                    Number of        Proportion       Percentage

                                      Inhabitants        of Total            of Total

  TE$(I)                             AN(I)            AN(I)/SU2      (AN(I)/SU2)*100

  T o t a l                          SU2                  1.000000          100.0000

 

2.9-HUMAN/ANIMAL POPULATIONS AND ZOONOSES

  This subprogramme provides information on: 3) ratios of animal/human populations

INPUT DATA

    place, time - PL$,TI$

     animal species  -  SP$        number of animals  - AN        number of persons  - PE

RESULTS:

     Ratio of animals per one person           =  AN/PE  :   1

     Ratio of persons per one animal           =  PE/AN  :   1

 

2.9-HUMAN/ANIMAL POPULATIONS AND ZOONOSES

  This subprogramme provides information on:  4) ratios of animals/humans diseased by zoonoses

INPUT DATA

    place, time - PL$,TI$

     zoonotic disease(s) - DI$

     animal species - SP$

     number of animals             - AN

     number of healthy animals     - HA

     number of diseased animals    - DA

     number of persons             - PE

     number of healthy persons     - HP

     number of diseased persons    - DP

RESULTS:

     Ratio of diseased animals per one person            =  DA/PE  :   1

     Ratio of diseased animals per one diseased person   =  DA/DP  :   1

     Ratio of diseased persons per one animal            =  DP/AN  :   1

     Ratio of diseased persons per one diseased animal   =  DP/DA  :   1

 

 

        3-SELECTED INDICATORS OF ANIMAL POPULATION HEALTH STRUCTURES

      

        1-Animal population epizootiological structure

        2-Animal population disease territorial structure

        3-Animal population diseases foci (outbreaks) types' structure

        4-Territory epizootiological structure

        5-Morbidity, mortality and nidality structure by causes/forms

        6-Disease occurrence according to animal species and categories

        7-Disease occurrence according to breeding/production conditions

        8-Disease occurrence according to ecological conditions

        9-Tables of animal disease occurrence acc. to dif. criteria

        10-Tables of animal population, farms and territory epiz. structure

        11-Tables of disease foci and intrafocal structure

        12-Proportions of disease different forms/symptoms/findings

        13-Proportions of specific etiological agents/antibodies findings

 

 

3.1-ANIMAL POPULATION EPIZOOTIOLOGICAL STRUCTURE

INPUT DATA:

     disease(s) - EN$

     place, time - LU$,TI$

     species, category(ies) - SP$,CA$

     total number of animals of a given population - A

     number of epizootiologically  h e a l t h y  animals - B

     number of exposed epiz. healthy animals - F

     number of directly exposed epiz. healthy animals - H

     number of animals epizootiologically  i n d e t e r m i n a t e  with clinical symptoms - J

     number of epizootiologically  a f f e c t e d  ( d i s e a s e d )   animals - D

     number of animals epizootiologically affected  (diseased) with clinical symptoms – L

  ANIMAL POPULATION   E P I Z O O T I O L O G I C A L   S T R U C T U R E

                                                                                      Number        Proportion

  Epizootiologically healthy animals                             B                   B/A

    Non-exposed epi. healthy animals                         (B-F)             (B-F)/A

    Exposed epi. healthy animals                                    F                   F/A

      Indirectly exposed healthy animals                    (F-H)            (F-H)/A

      Directly exposed healthy animals                          H                   H/A

 

  Epizootiologically indeterminate animals            (A-B-D)      (A-B-D)/A

    Epiz.indeterminate anim. without symptoms   (A-B-D-J)    (A-B-D-J)/A

    Epiz. indeterminate animals with symptoms            J                   J/A

 

  Epizootiologically affected (diseased) animals       D                  D/A

    Epiz.affected animals without symptoms            (D-L)           (D-L)/A

    Epiz.affected animals with symptoms                     L                  L/A

                   T o t a l                                                         A                1.0000

 

3.2-ANIMAL POPULATION DISEASE TERRITORIAL STRUCTURE

 This subprogramme calculates:    1) diseased animals' territorial density and distribution

INPUT DATA:

     place (territory), time - PL$,TI$

     species, category(ies) - SP$,CA$

     disease(s) - DI$

     space measure units - SU$

     number of data on space and animals - N

FOR I=1 TO N

     I:    subterritory, size, diseased animals - TE$(I),TS(I),AN(I)

SU1 = sum of TS(I)

SU2 = sum of AN(I)

    D I S E A S E D   ANIMALS'  TERRITORIAL  DENSITY  AND  DISTRIBUTION

Subterritory    SU$         Diseased      Average      Proportion           Percentage

                                           Animals        Number       of Total                of Total

 TE$(I)               TS(I)       AN(I)         AN(I)/TS(I)    AN(I)/SU2      (AN(I)/SU2)*100

 T o t a l            SU1         SU2              SU2/SU1       1.000000             100.0000

 

3.2-ANIMAL POPULATION DISEASE TERRITORIAL STRUCTURE

 This subprogramme calculates: 2) farms - diseased animals' average number and territorial distribution

INPUT DATA:

     place (territory), time - PL$,TI$

     species, category(ies) - SP$,CA$

     disease(s) - DI$

     number of data on space and animals - N

FOR I=1 TO N

     I:    subterritory, number of farms, diseased animals - TE$(I),TS(I),AN(I)

SU1 = sum of TS(I)

SU2 = sum of AN(I)

    F A R M S:  DISEASED  ANIMALS' AVERAGE  AND TERRITORIAL DISTRIBUTION

Subterritory    Farms       Diseased      Average      Proportion           Percentage

                                            Animals         Number       of Total                of Total

 TE$(I)               TS(I)        AN(I)          AN(I)/TS(I)   TS(I)/SU1        (TS(I)/SU1)*100

 T o t a l             SU1         SU2              SU2/SU1       1.000000              100.0000

 

3.2-ANIMAL POPULATION DISEASE TERRITORIAL STRUCTURE

 This subprogramme calculates:   3) diseased animals' simple territorial distribution

INPUT DATA:

     place (territory), time - PL$,TI$

     species, category(ies) - SP$,CA$

     disease(s) - DI$

     number of data on space and animals - N

FOR I=1 TO N

     I:    subterritory, diseased animals - TE$(I),AN(I)

SU2 = sum of AN(I)

    D I S E A S E D   ANIMALS'   TERRITORIAL   D I S T R I B U T I O N

Subterritory                Diseased               Proportion                Percentage

                                       Animals                  of Total                      of Total

 TE$(I)                             AN(I)                 AN(I)/SU2           (AN(I)/SU2)*100

 T o t a l                           SU2                     1.000000                      100.0000

 

3.3-ANIMAL DISEASE FOCI (OUTBREAKS) TYPES' STRUCTURE

INPUT DATA:

     disease(s) - EN$          species - SP$

     focal measure units (animal housings,  herds/flocks areas, farms, ranches, villages, etc.) - FU$

     type(s)/form(s) of foci (outbreaks) - TF$

     place - LU$               time-moment - TI$

     total number of foci existing at the given moment - TF

     number of foci with affected (clinically + subclinically)    animals at the given moment - FA

     number of foci with subclinically only affected animals    at the given moment - CA

     number of foci without susceptible animals (depopulated)  at the given moment - FW

FAA=(FA+FW)

         F O C I  (O U T B R E A K S)  T Y P E S'  S T R U C T U R E

      Characteristics               Number              Proportion                   Percentage

      With affected animals         FA                   FA/TF                       FA/TF*100

           clinically                     (FA-CA)          (FA-CA)/TF            (FA-CA)/TF*100

           subclinically only          CA                   CA/TF                       CA/TF*100

      With non-affected animals  (in observation)

                                            TF-(FA+FW)    (TF-(FA+FW))/TF   (TF-(FA+FW))/TF*100

      Without susceptible animals

                (depopulated)       FW                      FW/TF                        FW/TF*100

      T o t a l                              TF                      1.0000                            100.0000

 

3.4-TERRITORY EPIZOOTIOLOGICAL STRUCTURE

 (villages, districts, regions, provinces, counties, countries, zones, etc.)

INPUT DATA:

     territory - LU$                           time-moment - TI$

     disease(s) - FE$

     species, category(ies) - SP$,CA$

     surface measure units -SU$

     total number of surface measure units of the territory - B

     total number of specifically diseased animals  in the territory - A

     number of surface measure units  of specific disease(s) free zones - L

     number of surface measure units of exposed specific disease(s) free zones (at risk) - M

     number of surface measure units of zones affected  by specific disease(s) – O

    T E R R I T O R Y   E P I Z O O T I O L O G I C A L   S T R U C T U R E

   Average density of specifically diseased animals  per one SU$ =  A/B

Q=(B-L-O)/B

                                                                    SU$         Proportion      %

  Disease(s) free zones                               L              L/B               L/B*100

     Non-exposed free zones (out of risk)   L-M        (L-M)/B        ((L-M)/B)*100

     Exposed free zones (at risk)                   M           M/B               M/B*100

  Indeterminate zone                               (B-L-O)      (B-L-O)/B      Q*100

  Affected zones                                           O             O/B              O/B*100

            T o t a l                                               B           1.0000             100.00

 

3.5-MORBIDITY, MORTALITY, NIDALITY AND TERRITORY STRUCTURE  ACCORDING TO DIFFERENT CAUSES/FORMS

Structure of: morbidity (d)

INPUT DATA:

     type/form of morbidity - TM$

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     number of evaluated causes/forms - N

FOR I=1 TO N

List of data:

   I:    cause/form, number of cases - S$(I),U(I)

SU = sum of U(I)

    M O R B I D I T Y   S T R U C T U R E   ACCORDING  TO  CAUSES / FORMS

     Cause/form              Number of        Proportion       Percentage

                                       Cases/units

     S$(I)                               U(I)                 U(I)/SU         (U(I)/SU)*100

     T o t a l                          SU                    1.0000             100.0000

 

3.5-MORBIDITY, MORTALITY, NIDALITY AND TERRITORY STRUCTURE  ACCORDING TO DIFFERENT CAUSES/FORMS

Structure of:  mortality (m)

INPUT DATA:

     type/form of mortality - TY$

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     number of evaluated causes/forms - N

FOR I=1 TO N

List of data:

   I:    cause/form, number of cases - S$(I),U(I)

SU = sum of U(I)

    M O R T A L I T Y   S T R U C T U R E   ACCORDING  TO  CAUSES / FORMS

     Cause/form              Number of        Proportion       Percentage

                                       Cases/units

     S$(I)                               U(I)                 U(I)/SU       (U(I)/SU)*100

     T o t a l                          SU                   1.0000           100.0000

 

3.5-MORBIDITY, MORTALITY, NIDALITY AND TERRITORY STRUCTURE  ACCORDING TO DIFFERENT CAUSES/FORMS

Structure of: nidality/focality (f)

INPUT DATA:

     type/form of nidality - TF$

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     number of evaluated causes/forms - N

FOR I=1 TO N

List of data:

   I:    cause/form, number of cases - S$(I),U(I)

SU = sum of U(I)

  D I S E A S E   N I D A L I T Y  STRUCTURE  ACCORDING  TO  CAUSES / FORMS

     Cause/form              Number of             Proportion       Percentage

                                       Cases/units

     S$(I)                                U(I)                      U(I)/SU       (U(I)/SU)*100

     T o t a l                           SU                         1.0000           100.0000

 

3.5-MORBIDITY, MORTALITY, NIDALITY AND TERRITORY STRUCTURE  ACCORDING TO DIFFERENT CAUSES/FORMS

Structure of:  affected territory (t)

INPUT DATA:

     type/form of affected territory - TT$

     place, time - PL$,TI$

     space measure units - TMU$

     number of evaluated causes/forms - N

FOR I=1 TO N

List of data:

   I:    cause/form, number of space units - S$(I),U(I)

SU = sum of U(I)

  A F F E C T E D   T E R R I T O R Y  STRUCTURE ACCORDING TO CAUSES / FORMS

     Cause/form              Number of     Proportion    Percentage

                                           TMU$

     S$(I)                                U(I)            U(I)/SU       (U(I)/SU)*100

     T o t a l                           SU              1.0000           100.0000

 

3.6-DISEASE OCCURRENCE STRUCTURE ACCORDING TO ANIMAL SPECIES AND CATEGORIES

     This subprogramme calculates disease occurrence according to 1) species (host range)

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

     number of species - N

FOR I=1 TO N

  List of data:

  I:  name of the species, number of diseased animals -  SG$(I),NA(I)

SU = sum of NA(I)

   S P E C I E S   S T R U C T U R E  OF  D I S E A S E D   A N I M A L S

    Species                  Diseased       Proportion     Percentage

                                     Animals

    SG$(I)                        NA(I)           NA(I)/SU      (NA(I)/SU)*100

    T o t a l                       SU               1.000000         100.0000

 

3.6-DISEASE OCCURRENCE STRUCTURE ACCORDING TO ANIMAL SPECIES AND CATEGORIES

     This subprogramme calculates disease occurrence according to  2) categories

 Animal categories:  according to age, sex, weight, breed, physiological stage, nutrition  status, immunity status, type/level of productivity, type of breeding, type

  of exploitation, production stage, technology, concentration, etc.

INPUT DATA:

     disease - DI$

     place, time - PL$,TI$

     species, category according to - SP$,CA$

     number of category subgroups - N

FOR I=1 TO N

  List of data:

  I:    name of the subgroup, number of diseased animals -  SG$(I),NA(I)

SU = sum of NA(I)

   C A T E G O R Y   S T R U C T U R E  OF  D I S E A S E D   A N I M A L S

    Category                 Diseased       Proportion     Percentage

    Subgroup                 Animals

    SG$(I)                          NA(I)           NA(I)/SU      (NA(I)/SU)*100

    T o t a l                         SU               1.000000         100.0000

 

3.7-DISEASE OCCURRENCE ACCORDING TO BREEDING/PRODUCTION CONDITIONS

(according to: animal breeding/production exploitation, technology, concentration, housing/herd/flock/farm size, management, sector, etc.)

INPUT DATA:

     disease(s) - DI$

     species - SP$

     place, time - PL$,TI$

     type of conditions

     criterion for subgrouping - CA$

     number of evaluated subgroups - N

FOR I=1 TO N

  name of the subgroup, number of diseased animals:   I:       SG$(I),NA(I)

SU = sum of NA(I)

   ANIMAL  DISEASE  OCCURENCE  ACCORDING TO  BREEDING/PRODUCTION  CONDITIONS

    Subgroup                 Diseased       Proportion     Percentage

                                       Animals

    SG$(I)                           NA(I)           NA(I)/SU      (NA(I)/SU)*100

    T o t a l                          SU              1.000000              100.0000

 

3.8-DISEASE OCCURRENCE ACCORDING TO ECOLOGICAL CONDITIONS

[atmospherical, geospherical, hydrospherical and biospherical (flora/fauna) factors; hygiene, etc.]

INPUT DATA:

     disease(s) - DI$

     species - SP$

     place, time - PL$,TI$

     type of ecological conditions - EC$

     criterion for subgrouping - CA$

     number  of evaluated subgroups - N

FOR I=1 TO N

  name of the subgroup, number of diseased animals:  I:     SG$(I),NA(I)

SU = sum of NA(I)

   D I S E A S E  OCCURENCE  ACCORDING  TO  E C O L O G I C A L   CONDITIONS

    Subgroup                 Diseased       Proportion     Percentage

                                       Animals

    SG$(I)                           NA(I)           NA(I)/SU      (NA(I)/SU)*100

    T o t a l                          SU               1.000000       100.0000

 

3.9-TABLES OF POPULATION DISEASE OCCURRENCE ACCORDING TO   SPECIES, CATEGORIES, ECOLOGICAL AND ECONOMIC CONDITIONS

This subprogramme creates space/time tables of:  1) population disease occurrence according to species

INPUT DATA

     place, time (period) - PL$,TI$

     disease - DI$

     number of species    - N

FOR I=1 TO N

     names of the species - SC$(I)

     data according to subterritories (s) or time series (t)

     measure units - MU$

FOR I=1 TO N

Row names, values of individual columns:

    I row:    CO$(I),                 C(I),D(I),E(I),F(I),G(I)

     POPULATION  DISEASE  OCCURRENCE  ACCORDING  TO  SPECIES

Species       T o t a l                                                 SC$(1)     SC$(2)     SC$(3)     SC$(4)     SC$(5)

CO$(I)        C(I)+D(I)+E(I)+F(I)+G(I)                     C(I)           D(I)          E(I)          F(I)          G(I)

T o t a l        T                                                            C               D              E              F              G

Proportion    1.0000                                                  C/T           D/T          E/T          F/T          G/T

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

T=C+D+E+F+G

 

3.9-TABLES OF POPULATION DISEASE OCCURRENCE ACCORDING TO   SPECIES, CATEGORIES, ECOLOGICAL AND ECONOMIC CONDITIONS

This subprogramme creates space/time tables of:  2) population disease occurrence according to categories

INPUT DATA

     place, time (period) - PL$,TI$

     disease - DI$

     number of categories    - N

FOR I=1 TO N

     names of the categories - SC$(I)

     data according to subterritories (s) or time series (t)

     measure units - MU$

FOR I=1 TO N

Row names, values of individual columns:

    I row:    CO$(I),                 C(I),D(I),E(I),F(I),G(I)

     POPULATION  DISEASE  OCCURRENCE  ACCORDING  TO  CATEGORIES

Category      T o t a l                                 SC$(1)     SC$(2)     SC$(3)     SC$(4)     SC$(5)

CO$(I)           C(I)+D(I)+E(I)+F(I)+G(I)    C(I)          D(I)           E(I)         F(I)          G(I)

T o t a l         T                                            C              D               E             F              G

Proportion    1.0000                                   C/T          D/T           E/T         F/T          G/T

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

T=C+D+E+F+G

 

3.9-TABLES OF POPULATION DISEASE OCCURRENCE ACCORDING TO    SPECIES, CATEGORIES, ECOLOGICAL AND ECONOMIC CONDITIONS

This subprogramme creates space/time tables of: 3) population disease occurrence according to ecological conditions

INPUT DATA

     place, time (period) - PL$,TI$

     disease - DI$

     species, category(ies)  - SP$,CA$

     number of conditions    - N

FOR I=1 TO N

     names of the conditions - SC$(I)

     data according to subterritories (s) or time series (t)

     measure units - MU$

FOR I=1 TO N

Row names, values of individual columns:

    I row:    CO$(I),                 C(I),D(I),E(I),F(I),G(I)

     POPULATION  DISEASE  OCCURRENCE  ACCORDING  TO  ECOLOGICAL  CONDITIONS

Conditions    T o t a l                               SC$(1)  SC$(2)     SC$(3)     SC$(4)     SC$(5)

CO$(I)            C(I)+D(I)+E(I)+F(I)+G(I)  C(I)       D(I)          E(I)          F(I)           G(I)

T o t a l          T                                          C           D              E              F               G

Proportion    1.0000                                  C/T       D/T          E/T          F/T           G/T

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

T=C+D+E+F+G

 

3.9-TABLES OF POPULATION DISEASE OCCURRENCE ACCORDING TO   SPECIES, CATEGORIES, ECOLOGICAL AND ECONOMIC CONDITIONS

This subprogramme creates space/time tables of:  4) population disease occurrence according to economic conditions

 INPUT DATA

     place, time (period) - PL$,TI$

     disease - DI$

     species, category(ies)  - SP$,CA$

     number of conditions    - N

FOR I=1 TO N

     names of the conditions - SC$(I)

     data according to subterritories (s) or time series (t)

     measure units - MU$

FOR I=1 TO N

Row names, values of individual columns:

    I row:    CO$(I),                 C(I),D(I),E(I),F(I),G(I)

     POPULATION  DISEASE  OCCURRENCE  ACCORDING  TO  ECONOMIC  CONDITIONS

Conditions    T o t a l                                SC$(1)     SC$(2)     SC$(3)     SC$(4)     SC$(5)

CO$(I)            C(I)+D(I)+E(I)+F(I)+G(I)   C(I)            D(I)          E(I)           F(I)         G(I)

T o t a l          T                                           C                D              E               F             G

Proportion    1.0000                                   C/T            D/T          E/T           F/T         G/T

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

T=C+D+E+F+G

 

3.10-TABLES OF ANIMAL POPULATION, FARMS AND TERRITORY EPIZ.STRUCTURES

This subprogramme facilitates the creation of tables according to space and time with following structures:  1) total, free and diseased animals

INPUT DATA

     title - NA$

     disease, species, category(ies) - DI$,SP$,CA$

     place, period - PL$,TI$

     number of rows - N

FOR I=1 TO N

     data according to subterritories (s) or time series (t) - DA$

  List         row names,     values of individual columns: 

                  DA$,   total, disease free, diseased animals    I:         CO$(I),       C(I),  D(I),         E(I)

   Title: NA$

DA$         T o t a l   Dis. Free   Proportion            Indeter-      Diseased        Proportion

                                                                                minate                                                                                                                                                              

CO$(I)      C(I)           D(I)         D(I)/C(I)         C(I)-(D(I)+E(I))     E(I)        E(I)/C(I)

T o t a l    C               D                 D/C                 C-(E+D)             E               E/C

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

 

3.10-TABLES OF ANIMAL POPULATION, FARMS AND TERRITORY EPIZ.STRUCTURES

This subprogramme facilitates the creation of tables according to space and time with following structures:  2) total, free and affected herds

INPUT DATA

     title - NA$

     disease, species, category(ies) - DI$,SP$,CA$

     place, period - PL$,TI$

     number of rows - N

FOR I=1 TO N

     data according to subterritories (s) or time series (t) - DA$

  List         row names,     values of individual columns:

                  DA$,          total, disease free, affected herds    I:         CO$(I),       C(I),  D(I),         E(I)

    Title: NA$

DA$         T o t a l   Dis. Free   Proportion           Indeter-     Diseased     Proportion                                                                              

                                                                               minate

CO$(I)      C(I)           D(I)         D(I)/C(I)       C(I)-(D(I)+E(I))    E(I)        E(I)/C(I)

T o t a l    C               D                D/C                C-(E+D)            E              E/C

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

 

3.10-TABLES OF ANIMAL POPULATION, FARMS AND TERRITORY EPIZ.STRUCTURES

This subprogramme facilitates the creation of tables according to space and time with following structures:   3) total, free and affected farms

 INPUT DATA

     title - NA$

     disease, species, category(ies) - DI$,SP$,CA$

     place, period - PL$,TI$

     number of rows - N

FOR I=1 TO N

     data according to subterritories (s) or time series (t) - DA$

  List         row names,     values of individual columns:

               DA$,          total, disease free, affected farms    I:         CO$(I),       C(I),  D(I),         E(I)

    Title: NA$

DA$         T o t a l   Dis. Free   Proportion            Indeter-     Diseased    Proportion

                                                                                minate

CO$(I)      C(I)            D(I)         D(I)/C(I)        C(I)-(D(I)+E(I))    E(I)        E(I)/C(I)

T o t a l    C                D                 D/C                C-(E+D)             E              E/C

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

 

3.10-TABLES OF ANIMAL POPULATION, FARMS AND TERRITORY EPIZ.STRUCTURES

This subprogramme facilitates the creation of tables according to space and time with following structures:   4) total, free and affected territory

 INPUT DATA

     title - NA$

     disease, species, category(ies) - DI$,SP$,CA$

     place, period - PL$,TI$

     number of rows - N

FOR I=1 TO N

     data according to subterritories (s) or time series (t) - DA$

     surface measure units, data source - MU$,DS$

  List         row names,     values of individual columns:

               DA$,          total, disease free, affected territory    I:         CO$(I),       C(I),  D(I),         E(I)

    Title: NA$

DA$         T o t a l     Dis. Free   Proportion         Indeter-      Diseased    Proportion

                                                                               minate

CO$(I)      C(I)             D(I)         D(I)/C(I)        C(I)-(D(I)+E(I))   E(I)        E(I)/C(I)

T o t a l    C                 D                 D/C              C-(E+D)             E               E/C

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

 

3.11-TABLES OF DISEASE FOCI AND INTRAFOCAL STRUCTURES

This subprogramme facilitates the creation of the tables, according to space and time, with following structure:

      1) foci: total, with diseased animals (clinically, subclinically only),  in observation and depopulated

INPUT DATA

     title - NA$

     disease, species - DI$,SP$

     place, time - PL$,TI$

     foci form/type -FT$

     data according to subterritories (s) or time series (t) - DA$

     number of rows - N

FOR I=1 TO N

  Row names, values of individual columns:

  DA$,       f o c i  total, foci with animals diseased clinically,  diseased subclinically only, depopulated foci -

             I:                       CO$(I),    C(I),D(I),E(I),G(I)

F(I)=C(I)-(D(I)+E(I)+G(I))

    Title: NA$

DA$          T o t a l     With    Animals    Diseased    In                 Depopulated

                                     -----------------------------------    Observation

                                    Clinically        Subclin. only

CO$(I)        C(I)          D(I)                        E(I)                F(I)                  G(I)

T o t a l      C              D                            E                    F                      G

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

    P r o p o r t i o n s:

             T o t a l           With    Animals    Diseased    In                 Depopulated

                                      -----------------------------------    Observation

                                       Clinically    Subclin. only

CO$(I)        C(I)             D(I)/C(I)         E(I)/C(I)            F(I)/C(I)         G(I)/C(I)

T o t a l      C                    D/C                  E/C                     F/C                G/C

 

3.11-TABLES OF DISEASE FOCI AND INTRAFOCAL STRUCTURES

=====================================================

This subprogramme facilitates the creation of the tables, according to space and time, with following structure:  2) intrafocal animals: total, affected clinically and subclinically,

         indeterminate and disease free

INPUT DATA

     title - NA$

     disease, species - DI$,SP$

     place, time - PL$,TI$

     disease form/type - DT$

     data according to subterritories (s) or time series (t) - DA$

     number of rows - N

FOR I=1 TO N

  Row names, values of individual columns:

  DA$,       intrafocal  a n i m a l s  total, diseased clinically,  subclinically, disease free             I:                       CO$(I),    C(I),D(I),E(I),G(I)

F(I)=C(I)-(D(I)+E(I)+G(I))

    Title: NA$

DA$           T o t a l     D  i   s   e   a   s  e  d           Indetermi-  Disease free

                                    Clinically   Subclin. only    nate

CO$(I)        C(I)              D(I)               E(I)                 F(I)              G(I)

T o t a l      C                  D                   E                     F                  G

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

    P r o p o r t i o n s:

              T o t a l      D  i   s   e   a   s  e  d          Indetermi-  Disease Free

                                 Clinically   Subclin. only  nate

CO$(I)       C(I)         D(I)/C(I)    E(I)/C(I)          F(I)/C(I)       G(I)/C(I)

T o t a l     C              D/C             E/C                   F/C              G/C

 

3.12-PROPORTIONS OF DISEASE DIFFERENT FORMS/SYMPTOMS/FINDINGS

INPUT DATA:

     disease - DI$

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     investigations intravitam (i) or postmortem (p) - INV$

If INV$='i' then IN$ = intravitam investigations

If INV$='p' then IN$ = postmortem investigations

     total number of investigated  d i s e a s e d  animals - AN

     number of forms/symptoms/findings - N

FOR I=1 TO N

           List of data :   I:

If INV$='i' then   form/symptom, number of cases - M$(I),X(I)

If INV$='p' then   finding name, number of cases - M$(I),X(I)

T = sum of X(I)

    PROPORTIONS  OF  DISEASE  DIFFERENT  FORMS / SYMPTOMS / FINDINGS

                      Number of       F  i  n  d  i  n  g  s               Diseased Animals

IN$                 Cases             Proportion   Percentage   Proportion  Percentage

M$(I)               X(I)                   X(I)/T       X(I)/T*100     X(I)/AN    X(I)/AN*100

T o t a l           T                       1.0000         100.0000        1.0000           100.0000

 

3.13-PROPORTIONS OF SPECIFIC ETIOLOGICAL AGENTS/ANTIBODIES FINDINGS

INPUT DATA:

     etiological group - DI$

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     etiological agents findings (e) or positive serological findings (s) - INV$

If INV$ = 'e' then IN$ = microbiological investigations:

If INV$ = 's' then IN$ = serological investigations:

     number of etiological names - N

FOR I=1 TO N

     List of data:     I:

If INV$ = 'e' then   etiological agent, number of findings - M$(I),X(I)

If INV$ = 's' then   specific disease serology, number of findings - M$(I),X(I)

T = sum of X(I)

PROPORTIONS OF SPECIFIC ETIOLOGICAL AGENTS/ANTIBODIES FINDINGS

    IN$                 Number of      Total  F i n d i n g s'

                            Findings        Proportion    Percentage

    M$(I)                 X(I)                X(I)/T         X(I)/T*100

    T o t a l              T                   1.0000           100.0000

Note: Applicable also for other markers of infection (.e.g. allergic reaction).

 

 

         4-SELECTED INDICATORS OF EPIZOOTIC PROCESS DYNAMICS

         

         1-Comparative indexes of population health phenomena dynamics

         2-Average of changing numbers of diseased animals, foci etc.

         3-Seasonality of population health/disease phenomena

         4-Selected tendency indicators of morbidity and nidality

         5-Relations between new cases and space/time/diseased/foci

         6-Population 'vertical movement' and chronic disease process

         7-Number of diseased animals according to survival rates

         8-Territorial propagation of transmissible diseases

         9-Development of disease frequency with cyclic tendency

         10-Development of disease with ascending/descending tendency

         11-Chronological time series of population health phenomenon

 

 

4.1-COMPARATIVE INDEXES OF POPULATION HEALTH PHENOMENA DYNAMICS

IMPUT DATA:

     health phenomenon - FE$

     place, period - LU$,PE$

     number of evaluated subperiods or moments - N

     time, phenomenon values - NA$(I),X(I)

FOR I=2 TO N

    COMPARATIVE INDEXES OF POPULATION HEALTH PHENOMENA DYNAMICS

     Time               Input Data       Comparative         I n d e x

                                                       -----------------------------------

                                                          Current                  Chain

 1  NA$(1)              X(1)                100.0000                100.0000

 I   NA$(I)              X(I)            (X(I)/X(1))*100  (X(I)/X(I-1)*100

 

4.2-AVERAGE OF CHANGING NUMBERS OF DISEASED ANIMALS, FOCI   AND OTHER EPI. PHENOMENA

     This subprogramme calculates average of: 1) changing numbers of diseased animals

INPUT DATA:

     disease(s) -DI$

     species, category(ies) - SP$,CA$

     place - LU$

     time (initial and final dates of the period) - PE$

     time measure units - UT$

     number of diseased animals existing at the beginning of period - A

     number of diseased animals existing  at the end of the period - B

     total duration of the given period in time measure units - C

     subperiods' average duration in time measure units – D

RESULT:

If A>B then W$ = '-' else W$ = '+'

     Absolute difference between initial and final number of diseased animals                                  =  (B-A)

     Average absolute value of the change of number  of diseased animals during one subperiod             =  (B-A)/(C/D)

     Average relative value of the change of initial number  of diseased animals during one subperiod = W$ (((B-A)/(C/D))/(B-A))*100 %

 

4.2-AVERAGE OF CHANGING NUMBERS OF DISEASED ANIMALS, FOCI  AND OTHER EPI. PHENOMENA

     This subprogramme calculates average of:  2) changing numbers of foci (outbreaks)

INPUT DATA:

     foci - FO$                           place - LU$

     time (initial and final dates of the period) - PE$

     time measure units - UT$

     number of foci (outbreaks) existing at the beginning of the period - A

     number of foci (outbreaks) existing  at the end of the period - B

     total duration of the given period in time measure units - C

     subperiods' average duration in time measure units – D

RESULT:

If A>B then W$ = '-' else W$ = '+'

     Absolute difference between initial and final number of foci (outbreaks)                                  =  (B-A)

     Average absolute value of the change of number of foci (outbreaks) during one subperiod             =  (B-A)/(C/D)

     Average relative value of the change of initial number of foci (outbreaks) during one subperiod = W$ (((B-A)/(C/D))/(B-A))*100 %

 

4.2-AVERAGE OF CHANGING NUMBERS OF DISEASED ANIMALS, FOCI  AND OTHER EPI. PHENOMENA

     This subprogramme calculates average of:  3) changing numbers of epi. phenomenon units

INPUT DATA:

     epi. phenomenon - EP$

     place - LU$

     time (initial and final dates of the period) - PE$

     time measure units - UT$

     epi. phenomenon measure units - EPMU$

     number of epi. phenomenon measure units at the beginning of the period - A

     number of epi. phenomenon measure units at the end of the period - B

     total duration of the given period in time measure units - C

     subperiods' average duration in time measure units - D

RESULT:

If A>B then W$ = '-' else W$ = '+'

     Absolute difference between initial and final number of epi. phenomena                                  =  (B-A)

     Average absolute value of the change of number  of epi. phenomena during one subperiod             =  (B-A)/(C/D)

     Average relative value of the change of initial number  of epi. phenomena during one subperiod = W$ (((B-A)/(C/D))/(B-A))*100 %

 

4.3-SEASONALITY OF POPULATION HEALTH/DISEASE  PHENOMENA

     This subprogramme calculates the seasonality of: 1) disease(s)

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, period - LU$,AN$

     indicator measure units, number of years - IMU$,NY

 Absolute monthly values:

             January     E1,E2,E3,E4,E5,E6,E7,E8,E9,E10

             February    F1,F2,F3,F4,F5,F6,F7,F8,F9,F10

             March       M1,M2,M3,M4,M5,M6,M7,M8,M9,M10

             April       A1,A2,A3,A4,A5,A6,A7,A8,A9,A10

             May         Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10

             June        J1,J2,J3,J4,J5,J6,J7,J8,J9,J10

             July        U1,U2,U3,U4,U5,U6,U7,U8,U9,U10

             August      G1,G2,G3,G4,G5,G6,G7,G8,G9,G10

             September   S1,S2,S3,S4,S5,S6,S7,S8,S9,S10

             October     O1,O2,O3,O4,O5,O6,O7,O8,O9,O10

             November    N1,N2,N3,N4,N5,N6,N7,N8,N9,N10

             December    D1,D2,D3,D4,D5,D6,D7,D8,D9,D10

     E=E1+E2+E3+E4+E5+E6+E7+E8+E9+E10

     F=F1+F2+F3+F4+F5+F6+F7+F8+F9+F10

     M=M1+M2+M3+M4+M5+M6+M7+M8+M9+M10

     A=A1+A2+A3+A4+A5+A6+A7+A8+A9+A10

     Y=Y1+Y2+Y3+Y4+Y5+Y6+Y7+Y8+Y9+Y10

     J=J1+J2+J3+J4+J5+J6+J7+J8+J9+J10

     U=U1+U2+U3+U4+U5+U6+U7+U8+U9+U10

     G=G1+G2+G3+G4+G5+G6+G7+G8+G9+G10

     S=S1+S2+S3+S4+S5+S6+S7+S8+S9+S10

     O=O1+O2+O3+O4+O5+O6+O7+O8+O9+O10

     N=N1+N2+N3+N4+N5+N6+N7+N8+N9+N10

     D=D1+D2+D3+D4+D5+D6+D7+D8+D9+D10

     T=E+F+M+A+Y+J+U+G+S+O+N+D

     Z = T/(NY*12)

RESULT:

                   Total Number      %          Monthly Average    Season Index

     January          E              100*E/T          E/NY                ((E/NY)/Z)*100 %

     February        F              100*F/T          F/NY                ((F/NY)/Z)*100 %

     March            M            100*M/T         M/NY              ((M/NY)/Z)*100 %

     April              A              100*A/T        A/NY                ((A/NY)/Z)*100 %

     May               Y              100*Y/T         Y/NY                 ((Y/NY)/Z)*100 %

     June               J               100*J/T          J/NY                  ((J/NY)/Z)*100 %

     July               U               100*U/T        U/NY                 ((U/NY)/Z)*100 %

     August         G               100*G/T        G/NY                  ((G/NY)/Z)*100 %

     September    S               100*S/T         S/NY                  ((S/NY)/Z)*100 %

     October        O               100*O/T        O/NY                 ((O/NY)/Z)*100 %

     November    N               100*N/T        N/NY                 ((N/NY)/Z)*100 %

     December    D               100*D/T         D/NY                 ((D/NY)/Z)*100 %

     T o t a l        T                100.0000            Z

 

4.4-SELECTED TENDENCY INDICATORS OF MORBIDITY AND NIDALITY

     This subprogramme calculates tendency indicators of: 1) animal disease morbidity

INPUT DATA:

     disease(s) - EN$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     number of diseased animals at the beginning of the period - DB

     number of diseased animals existing in the period         - DP

     average number of diseased animals existing in the period         - DA

     number of new diseased animals in the period           - A

     number of extinct diseased animals (dead+slaughtered+removed+recovered) in the period   - B

RESULT:

     Difference between new and extinct diseased animals         = A-B

     New/extinct diseased animals' ratio                         = A/B

     Extinct/new diseased animals' ratio                         = B/A

     Index of morbidity stability tendency to initial number     = 1-(A/DB)

     Index of morbidity stability tendency to existing number    = 1-(A/DP)

     Index of morbidity stability tendency to average number     = 1-(A/DA)

     Index of morbidity reduction tendency to initial number     = (B-A)/DB

     Index of morbidity reduction tendency to existing number    = (B-A)/DP

     Index of morbidity reduction tendency to average number     = (B-A)/DA

     Index of morbidity increasing tendency to initial number    = (A-B)/DB

     Index of morbidity increasing tendency to existing number   = (A-B)/DP

     Index of morbidity increasing tendency to average number    = (A-B)/DA

 

4.4-SELECTED TENDENCY INDICATORS OF MORBIDITY AND NIDALITY

     This subprogramme calculates tendency indicators of: 2) animal disease nidality

INPUT DATA:

     disease(s) - EN$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     number of foci (outbreaks) at the beginning of the period - DB

     number of foci (outbreaks) existing in the period         - DP

     average number of foci (outbreaks) existing in the period         - DA

     number of new foci (outbreaks) in the period           - A

     number of extinct foci (outbreaks) in the period       - B

RESULT:

     Difference between new and extinct outbreaks               = A-B

     New/extinct outbreaks' ratio                               = A/B

     Extinct/new outbreaks' ratio                               = B/A

     Index of nidality stability tendency to initial number     = 1-(A/DB)

     Index of nidality stability tendency to existing number    = 1-(A/DP)

     Index of nidality stability tendency to average number     = 1-(A/DA)

     Index of nidality reduction tendency to initial number     = (B-A)/DB

     Index of nidality reduction tendency to existing number    = (B-A)/DP

     Index of nidality reduction tendency to average number     = (B-A)/DA

     Index of nidality increasing tendency to initial number    = (A-B)/DB

     Index of nidality increasing tendency to existing number   = (A-B)/DP

     Index of nidality increasing tendency to average number    = (A-B)/DA

 

4.5-RELATIONS BETWEEN NEW CASES AND SPACE/TIME/DISEASED/FOCI

     This subprogramme calculates following indicators of disease spreading:  1) ratio of disease new cases/space units

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,TI$

     definition of new cases - NC$

     number of disease new cases - DN

     space measure unit - SMU$

     number of space measure units of the territory – SUT

RESULT:

     Ratio of disease new cases per one space unit    =  (DN/SUT) / SMU$

     Ratio of space units per one new case of disease =  (SUT/DN)  SMU$  :  1

 

4.5-RELATIONS BETWEEN NEW CASES AND SPACE/TIME/DISEASED/FOCI

     This subprogramme calculates following indicators of disease spreading:  2) ratio of disease new cases/time units

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,TI$

     definition of new cases - NC$                   number of disease new cases - DN

     time measure unit - TMU$

     number of time measure units of the period - TUP

RESULT:

     Ratio of disease new cases per one time unit     =  (DN/TUP) /  TMU$

     Ratio of time units per one new case of disease  =  (TUP/DN)  TMU$  :  1

 

4.5-RELATIONS BETWEEN NEW CASES AND SPACE/TIME/DISEASED/FOCI

     This subprogramme calculates following indicators of disease spreading:  3) ratio of disease new cases/total diseased animals

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,TI$

     definition of new cases - NC$                        number of disease new cases - DN

     total number of diseased animals at the beginning of the period - DAO

     total number of diseased animals existing in the period     - DAP

     total average number of diseased animals existing in the period     - DAA

RESULT:

     Ratio of disease new cases per one diseased animal  existing at the beginning of the period  = DN/DAO

     Ratio of diseased animals existing at the beginning  of the period per one new case of disease  = DAO/DN

     Ratio of disease new cases per one diseased  animals existing in the period      = DN/DAP

     Ratio of diseased animals existing in the period  per one new case of disease  = DAP/DN

     Ratio of disease new cases per one diseased animal of average number in the period      = DN/DAA

     Ratio of diseased animals' average number existing  in the period per one new case of disease  = DAA/DN

 

4.5-RELATIONS BETWEEN NEW CASES AND SPACE/TIME/DISEASED/FOCI

     This subprogramme calculates following indicators of disease spreading: 4) ratio of new/total foci

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,TI$

     definition of new foci - NC$                     number of new foci - F

     total number of foci existing at the beginning of the period - FO

     total number of foci existing in the period       - FP

     total average number of foci existing in the period     - FA

RESULT:

     Ratio of new foci per one focus  existing at the beginning of the period  = F/FO

     Ratio of foci existing at the beginning of the period per one new focus     = FO/F

     Ratio of new foci per one focus existing in the period      = F/FP

     Ratio of foci existing in the period  per one new focus     = FP/F

     Ratio of new foci per one focus of average existing in the period      = F/FA

     Ratio of average number of foci existing in the period per one new focus      = FA/F

 

4.6-POPULATION 'VERTICAL MOVEMENT' AND CHRONIC DISEASE EPIZOOTIC PROCESS

  This subprogramme calculates: 1) combination of existing, new and extinct diseased animals

INPUT DATA

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, period - PL$,TI$

Question about indicator to be calculated to be left without any answer, however the other three data (major than 0 !) must be given !

     number of diseased animals existing at the beginning         - AO

     number of new diseased animals  (newly diseased+new born diseased+introduced)      - AN

     number of extinct diseased animals (dead+slaughtered+removed+recovered)       - AE

     number of diseased animals existing at the end of the period – AF

RESULT:

     Number of diseased animals at the beginning of the period = (AF-AN+AE)

     Number of diseased animals existing in the period       = ((AF-AN+AE)+AN)

     Number of new diseased animals in the period              = (AF-AO+AE)

     Number of diseased animals existing in the period       = ((AF-AN+AE)+AN)

     Number of extinct diseased animals in the period          = (AO-AF+AN)

     Number of diseased animals existing in the period         = (AO+AN)

     Number of diseased animals at the end of the period       = (AO+AN-AE)

     Number of diseased animals existing in the period         = AO+AN

 

4.6-POPULATION 'VERTICAL MOVEMENT' AND CHRONIC DISEASE EPIZOOTIC PROCESS

  This subprogramme calculates:   2) diseased animals' replacement rates

INPUT DATA

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, period - PL$,TI$

     number of new diseased animals  (newly diseased+new born diseased+introduced)     - AB

     total number of diseased animals existing  at the beginning of the period    - AO2

     total number of diseased animals existing in the period     - AP

     average number of diseased animals existing in the period   - AA

     duration (in days) of one population reproduction cycle     - RC

RESULT:

     Diseased animals replacement rate to initial number     =   (AB+AI)/AO2

     Diseased animals replacement rate to existing number    =   (AB+AI)/AP

     Diseased animals replacement rate to average number     =   (AB+AI)/AA

     Annual proportion of population reproduction cycle      =   365/RC

     Number of years of population reproduction cycle        =   RC/365

 

4.6-POPULATION 'VERTICAL MOVEMENT' AND CHRONIC DISEASE EPIZOOTIC PROCESS

  This subprogramme calculates:  3) estimate of remaining diseased animals within one generation cycle

INPUT DATA

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, period - PL$,TI$

   total number of diseased animals at the beginning of the period - AO3

   duration (in days) of one regular generation (replacement/reproduction) cycle - RC

   duration (in days) between the initial and evaluated days  w i t h i n  the generation cycle – PX

RESULT:

     Estimated number of diseased animals existing at the beginning  and still remaining */ at the evaluated day  =  AO3*(1-PX/RC)

     */ Note: If not eliminated prematurely and in the absence of migration.

 

4.6-POPULATION 'VERTICAL MOVEMENT' AND CHRONIC DISEASE EPIZOOTIC PROCESS

  This subprogramme calculates:  4) estimate of remaining diseased animals  within one regular continuing production/breeding cycle

INPUT DATA

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, period - PL$,TI$

   total number of diseased animals at the beginning of the period   - AOP

   duration (in days) of one regular continuing  production/breeding replacement cycle     - PPC

   duration (in days) between the initial and evaluated days  w i t h i n  the production/breeding cycle     - PPX

RESULT:

     Estimated number of diseased animals existing at the beginning  and still remaining */ at the evaluated day  =  AOP*(1-PPX/PPC)

     */ Note: If not eliminated prematurely and in absence of migration.

 

4.7-NUMBER OF DISEASED ANIMALS ACCORDING TO SURVIVAL RATES

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     total number of diseased animals at the beginning - A

     number of age subperiods - N

FOR I=1 TO N

List of data: names of subperiods, coefficients of diseased animals

survival probability (in form of proportions, i.e. numbers between >0 and 1 !) :

         I:   NA$(I),X(I)

R = cumulative multiples of X(I)

S = partial cumulative X(I) multiples

   ESTIMATION OF DISEASED ANIMALS' NUMBER ACCORDING TO SURVIVAL RATES

     Age            Survival    Mortality    Cumulative    Surviving

    Subperiod   Rate            Rate          Survival         Dis.Animals

                                                                  Rate             at the End

 I  NA$(I)         X(I)        (1-X(I))            S                        A*S

     T o t a l                                                R                       R*A

   From the initial number of  A  diseased animals after N  age subperiods  it can be estimated about  R*A  surviving diseased animals (if not removed prematurely).

 

4.8-SELECTED INDICATORS OF DISEASE TERRITORIAL PROPAGATION

     This subprogramme calculates: 1) combination of velocity, distance and time

INPUT DATA:

     disease(s) - EN$

     species - ES$

     place, period - LU$,PE$

     territorial surface measure units - US$

     length measure units                                      - UD$

     time measure units                                        - UT$

Do not answer (skip) the question about the indicator to be calculated !   Other two questions must be answered !

     velocity of disease propagation per one time measure unit - V

     distance of disease propagation in length measure units   - L

     time of disease propagation in time measure units         - T

Additional input data:

     average density of animals per one surface unit           - D

     estimated excision angle grade (1 - 360) of theoretical circular propagation    - E

RESULT:    

   Estimated velocity of disease propagation per one time measure unit    =  L/T UD$

   Estimated distance of disease propagation  during  T  UT$          =  V*T UD$

   Estimated time needed for disease propagation  up to the distance of  L  UD$   =  L/V   UT$

W = E/360

L = V*T

   Estimated affected zone (if disease propagation is theoretically circular)   =  L*L*3.1459 US$

   Estimated number of animals in affected  zone         =  D*L*L*3.14159*W

 

4.8-SELECTED INDICATORS OF DISEASE TERRITORIAL PROPAGATION

     This subprogramme calculates: 2) relations of newly to total affected territory

INPUT DATA:

     disease(s) - EN$

     species - ES$

     place, period - LU$,PE$

     territorial surface measure units - US$

     new affected territory in surface units                    - SNT

     affected territory at the beginning of the period  in surface units    - STO

     affected territory existing during the period  in surface units    - STP

     affected territory average existing during the period in surface units    - STA

RESULT:

      Ratio of new affected territory per one surface unit of initially affected territory    = SNT/STO

      Ratio of initially affected territory per one surface unit of new affected territory   = STO/SNT

      Ratio of new affected territory per one surface unit of affected territory existing during the period     = SNT/STP

      Ratio of affected territory existing during the period  per one surface unit of new affected territory   = STP/SNT

      Ratio of new affected territory per one surface unit of affected territory average during the period     = SNT/STA

      Ratio of affected territory average during the period per one surface unit of new affected territory   = STA/SNT

 

4.9-DEVELOPMENT OF DISEASE FREQUENCY WITH CYCLIC TENDENCY

(sinusoid curve formula adapted by the author: Y=A*SIN(((B*(X-C))/D)+A+MIN )

(Y=number of diseased animals; X=I=time(in days, weeks, months or years)

INPUT DATA:

     disease(s) - EN$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     time measure units - UT$:PRINT

     supposed amplitude between max/min number of diseased animals - A

     minimal value of the curve of diseased animals' number       - MIN

     duration between two peaks of the curve (in time units)      - V

     initial value of time (in time measure units) when  the number of diseased animals is in the curve middle  i.e. in the middle between maximum and minimum numbers  - C

     total duration of evaluated period (in time measure units)  - P

     intervals in time units for calculation of diseased animals - S

A = A/2

D = 57.2958 : change of radians in grades by dividing with coef.'D'

B = 360/V

DEVELOPMENT OF  D I S E A S E   FREQUENCY WITH  C Y C L I C   T E N D E N C Y

                 Time-end of           Estimated number

                 UT$                        of diseased animals

FOR I=0 TO P step S

                   I                       (A*SIN(((I-C)*B)/D)+A+MIN)

 

4.10-DEVELOPMENT OF DISEASE FREQUENCY WITH ASCENDING/DESCENDING TENDENCY

 (part of sinusoid curve formula adapted by the author; applicable for a current natural course of epizootic process in animal population  when no control action is taken)

for ascending curve: Y=A*SIN((B*X-90)/D)+A+MIN

for descending curve: Y=A*SIN((B*X+90)/D)+A+MIN

(Y=number of diseased animals; X=I=time(in days, weeks, months, etc.).

INPUT DATA:

     disease(s) - EN$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     time measure units - UT$

     supposed amplitude between max/min numbers of diseased animals - A

     period between max/min in time measure units                   - MM

     evaluated period duration in time measure units                - K

     intervals in time units for calculation of diseased animals    - S

Curve of diseased animals numbers - ascending (a) or descending (d) - C$

If 'a'-  minimum number of diseased animals at the  b e g i n n i n g - MIN

If 'd'-  minimal number of diseased animals at the period  e n d      - F

A = A/2         V = 2*MM           B = 360/V

D=57.2958 (conversion coefficient of radians into grades)

     A N I M A L   D I S E A S E   O C C U R R E N C E   DEVELOPMENT

                   Time-end of            Estimated number

                   UT$                    of diseased animals

For ascending curve:

                   (start)                           MIN

FOR I=S TO MM step S

                   I                         A*SIN((B*I-90)/D)+A+MIN

FOR I=MM+S TO K step S

                   I                                2*A+MIN

For descending curve:

                   (start)                        2*A+F

FOR I=1 TO MM step S

                   I                        (((A*SIN((I*B+90)/D)+A+F))

FOR I=MM+S TO K step S

                   I                                    F

 

4.11-CHRONOLOGICAL TIME SERIES OF POPULATION HEALTH PHENOMENON

INPUT DATA:

     variable (indicator), period - IN$,P$

     number of data on time and variables - N

FOR I=1 TO N

List subperiods or moments in chronological order, variable values:

              I:     U$(I),      V(I)

P1 = sum of I

P2 = sum of V(I)

P3 = sum of I*V(I)

P4 = sum of I^2

P5 = sum of (V(I))^2

B = (P3-P1*P2/N)/(P4-P1^2/N)

A = P2/N

If B<0 then Z$ = '-' else Z$ = '+'

   CHRONOLOGICAL   T I M E   S E R I E S   OF POPULATION HEALTH PHENOMENON

    Order        Subperiod/          Variable           I    n    d    e    x

    Number    Moment               Value          Current          Chained

      1                U$(1)                    V(1)            100.00              100.00

I=2 to N

      I                 U$(I)                    V(I)      (V(I)/V(1)*100)    (V(I)/V(I-1)*100)

    Linear trend - adjusted line:  Y  = A  Z$  X B      (least square line)

 

 

       5-SELECTED INDICATORS OF ANIMAL DISEASE RISK ASSESSMENT

     

       1-General indicators of animal disease risk

       2-Risk probability assessment of animal disease introduction I.

       3-Risk probability assessment of animal disease introduction II.

       4-Risk comparison of a disease introduction from several territories

       5-Risk comparison of several diseases introduction from one territory

       6-Animal population movement as potential risk of disease propagation

       7-Animal products transfer as potential risk of disease propagation

       8-Concentration of animals as potential risk of disease propagation

       9-Risk probability assessment of animal disease propagation

       10-Per capita food consumption as potential risk of food-born diseases

        (Note: See also module 11 of the Main Menu !)

 

 

5.1-GENERAL INDICATORS OF ANIMAL DISEASE RISK                                                                                                        (Ref.:Jenicek; Martin; Toma)

INPUT DATA:

     risk (disease) - RE$

     place - LU$                    time - TI$

     species - ES$                category(ies) - CA$

     Are you going to input relative (r) or absolute (a) data ?    (Rates as proportions, i.e. numbers between >0 and <1 !)

     incidence rate (major) among animals  e x p o s e d  to disease risk   - A

     incidence rate (minor) among animals  n o n-e x p o s e d  to disease risk   - B

RESULT:

    Grade of relative  risk (risk ratio)          =  A/B

    Grade of attributable (differential) risk     =  A-B

    Fraction of attributable risk                 =  (A-B)/A

    Percentage of attributable risk               =  ((A-B)/A)*100 %

OD=(A/(1-A))/(B/(1-B))

    Grade of risk superiority   (risk odds ratio, risk coefficient)   =  OD

 

5.1-GENERAL INDICATORS OF ANIMAL DISEASE RISK                                                                                                          (Ref.:Jenicek; Martin; Toma)

INPUT DATA:

     risk (disease) - RE$

     place - LU$                        time - TI$

     species - ES$                     category(ies) - CA$

     Are you going to input relative (r) or absolute (a) data ? a

     number of diseased among animals exposed to the risk         - C

     number of healthy among animals exposed to the risk          - D

     number of diseased among animals non-exposed to the risk     - E

     number of healthy among animals non-exposed to the risk      - F

RESULT:

PE=C/(C+D)                          PNE=E/(E+F)

    Grade of relative risk (risk ratio)              =  PE/PNE

    Grade of attributable (differential) risk        =  PE-PNE

    Fraction of attributable risk                    =  (PE-PNE)/PE

    Percentage of attributable risk                  =  ((PE-PNE)/PE)*100 %

    Grade of risk superiority (risk odds ratio, risk coefficient)      =  (C+F)/(E*D)

    Grade of individual risk of exposed animals      =  C/(C+D)

    Grade of individual risk of non-exposed animals  =  E/(E+F)

 

5.2-RISK PROBABILITY ASSESSMENT OF ANIMAL DISEASE AGENTS INTRODUCTION   I

   This subprogramme calculates a rough probability of potential risk of   specific animal disease agents to be introduced into a territory (country,   province, region, ranch, etc.) from abroad. Selected simple criteria  of  i n a b i l i t y - failure grades are used.  The input and result interpretation to be based upon theoretical knowledge  and practical experience and must make epizootiological sense.   Note: Diseased animals = affected clinically, subclinically and carriers of specific etiological agents.  Animal products  = not sterilized raw animal products.

INPUT DATA:

     specific disease - DI$

     commodity to be imported - animals (a) or animal products (p)  ? a

     species/category - SP$

     number of animals to be imported - NA

     type of animal product - TP$                           measure units - MU$

     quantity of product to be imported - QP

     name of importing unit/territory - IC$                      name of exporting unit/territory - EU$

     time - period - PE$

 All following questions must be answered ! Disease prevalence rate and grades of input estimates must be major than 0 and expressed as proportions !

    Situation in the exporting original territory/population/unit:

specific disease prevalence rate - true or estimated (>0 - <1)       - PR

estimated grade of  i n a b i l i t y  (failure) to  d i s c o v e r a l l  specifically  d i s e a s e d   a n i m a l s  and  h e r d s (considering: sensitivity/specificity of diagnostic methods used, population investigation grade, field and laboratory services capabilities, active field surveys, reporting/information systems, etc.)           - GD

estimated grade of  i n a b i l i t y  (failure)  to  a v o i d specific disease propagation (n e w   f o c i  - focal incidence) due to the lack of effective foci isolation and control and prevention field measures during previous critical period        - GI

estimated grade of  i n a b i l i t y  (failure)  to   a v o i d   d i s e a s e d  animals to be  e x p o r t e d  (considering: pre-export animal selection, testing, treatment and control  measures, reliability of certificates, eventual  p r e v i o u s   c a s e s of exporting diseased animals or their products, etc.)               - GF

RESULT:

P=PR*GI*GD*GF

Q=1-P                      INF=SQR((P*Q)/NA)

Risk probability grade of disease introduction  =  P +- 1.96*INF

         Estimated number of infected animals  to be probably introduced is about  NA*P

 

5.2-RISK PROBABILITY ASSESSMENT OF ANIMAL DISEASE AGENTS INTRODUCTION   I

INPUT DATA:

     specific disease - DI$

     commodity to be imported - animals (a) or animal products (p)  ? p

     type of animal product - TP$                              measure units - MU$

     quantity of product to be imported - QP

     name of importing unit/territory - IC$                name of exporting unit/territory - EU$

     time - period - PE$

 All following questions must be answered !  Disease prevalence rate and grades of input estimates must be major than 0  and expressed as proportions !

    Situation in the exporting original territory/population/unit:

specific disease prevalence rate - true or estimated (>0 - <1)       - PR

estimated grade of  i n a b i l i t y  (failure) to  d i s c o v e r a l l  specifically  d i s e a s e d   a n i m a l s,  h e r d s  and, particular products containing specific disease etiological  a g e n t s (considering: sensitivity/specificity of diagnostic methods used, grade of population/product investigation, field and laboratory services capabilities,  reporting and information systems, etc.)          - GD

estimated grade of  i n a b i l i t y  (failure) to   a v o i d the contamination of healthy products by specific pathogens during processing, storing and transport  - GI

estimated grade of  i n a b i l i t y  (failure) to  a v o i d specific etiological agents to be exported by the particular commodity (considering: pre-export product selection, testing,  treatment and  protection measures, reliability of certificates, eventual p r e v i o u s   c a s e s  of 'exporting' diseases, etc.)          - GF

RESULT:

P=PR*GI*GD*GF

Q=1-P                      INF=SQR((P*Q)/QP)

Risk probability grade of disease introduction  =  P +- 1.96*INF

         Estimated quantity of infected or contaminated products  to be probably introduced is about  QP*P MU$

 

5.3-RISK PROBABILITY ASSESSMENT OF ANIMAL DISEASE AGENTS INTRODUCTION   II

   This subprogramme calculates a rough probability of potential risk of   specific animal disease agents to be introduced into a territory (country,    province, region, ranch, etc.) from abroad. Selected simple criteria   of  a b i l i t y  grades are used.   The input and result interpretation to be based upon theoretical knowledge    and practical experience and must make epizootiological sense.   Note: Diseased animals = affected clinically, subclinically and carriers  of specific etiological agents.  Animal products  = not sterilized raw animal products.

INPUT DATA:

     specific disease - DI$

     commodity to be imported - animals (a) or animal products (p) ? a

     species (category) - SP$

     number of animals to be imported - NA

     name of importing unit/territory   - IC$                       name of exporting unit/territory   - EU$

 All following questions must be answered ! Disease prevalence rate and grades of input estimates must be major than 0  and expressed as proportions!

    Situation in the exporting original territory/population/unit:

specific disease prevalence rate - real or estimated (>0 - 1)        - PR

estimated grade of   a b i l i t y  to  d i s c o v e r   a l l specifically  d i s e a s e d   a n i m a l s  and  h e r d s (considering: sensitivity/specificity of diagnostic methods used, population investigation grade, field and laboratory services capabilities, active field surveys, reporting/information systems, etc.)                                                       - GD

estimated grade of  a b i l i t y   to  a v o i d  specific disease propagation (avoiding  n e w   f o c i  - focal incidence) thanks to preventive/control field measures during previous  critical period    - GI

estimated grade of  a b i l i t y   to   a v o i d   d i s e a s e d animal(s) to be  e x p o r t e d  (considering: pre-export animal selection, testing, treatment and control measures,  reliability of certificates, eventual  p r e v i o u s   c a s e s  of exporting infected animals or products, etc.)                                  - GF

RESULT:

P=PR*(1-GI)*(1-GD)*(1-GF)

Q=1-P                           INF=SQR((P*Q)/NA)

Risk probability grade of disease introduction  =  P   +-  1.96*INF

         Estimated number of infected animals  to be probably introduced is about   NA*P

 

5.3-RISK PROBABILITY ASSESSMENT OF ANIMAL DISEASE AGENTS INTRODUCTION   II

INPUT DATA:

     specific disease - DI$

     commodity to be imported - animals (a) or animal products (p) ? p

     type of animal product - TP$                                 measure units - MU$

     quantity of product to be imported - QP

     name of importing unit/territory   - IC$                         name of exporting unit/territory   - EU$

 All following questions must be answered ! Disease prevalence rate and grades of input estimates must be major than 0  and expressed as proportions!

    Situation in the exporting original territory/population/unit:

specific disease prevalence rate - real or estimated (>0 - 1)        - PR

estimated grade of  a b i l i t y   to   d i s c o v e r    a l l specifically  d i s e a s e d   a n i m a l s,  h e r d s  and animal products containing specific disease etiological  a g e n t s

(considering: sensitivity/specificity of diagnostic methods used, grade of population/product investigation, field and laboratory services capabilities, reporting/information systems, etc.)          - GD

estimated grade of  a b i l i t y  to   a v o i d   contamination of healthy products by specific pathogens during processing, storing and transport                                                - GI

estimated grade of  a b i l i t y  to  a v o i d   specific etiological agents to be exported by the particular commodity (considering: pre-export product selection, testing, treatment,

and protection measures, reliability of certificates, eventual p r e v i o u s  c a s e s  of 'exporting' the disease, etc.)        - GF

RESULT:

P=PR*(1-GI)*(1-GD)*(1-GF)

Q=1-P                           INF=SQR((P*Q)/QP)

Risk probability grade of disease introduction  =  P   +-  1.96*INF

         Estimated quantity of affected products  to be probably introduced is about   QP*P MU$

 

5.4-RISK COMPARISON OF DISEASE AGENTS INTRODUCTION FROM SEVERAL TERRITORIES

This subprogramme compares relative risks of specific disease agents to be introduced by direct import from territories  n o t   f r e e  of the disease.

   Criteria on disease and exporting territories situation:

a) grade of disease transmissibility - ability to be propagated

b) grade of disease occurrence - considering prevalence, incidence and spread

c) grade of  i n a b i l i t y  to  d i s c o v e r  all infected animals   and herds (due to insufficient: sensitivity of diagnostic methods used,  animal population investigation grade, field and laboratory services   capabilities, active field surveys, reporting/information systems,  etc.)

d) grade of  i n a b i l i t y   to  a v o i d  disease propagation (new foci)   i.e. inability to protect specific disease free animals, herds and territory   (due to the lack of or insufficient preventive and control field measures)

e) grade of  i n a b i l i t y   to  r e d u c e  disease  o c c u r r e n c e   (due to the lack or insufficient: reduction, elimination and/or eradication   field measures, sanitation actions, field and laboratory services, etc.)

f) grade of  i n e f f e c t i v e n e s s  of  pre-export  'f i l t e r'   (due to lack or insufficient: pre-export selection, treatment,   investigations and control measures, reliability of  veterinary services and   their certificates), considering also eventual  p r e v i o u s  c a s e s   of 'exporting' infected animals or infected/contaminated commodities, etc.

INPUT DATA:

     disease - DI$

     importing territory, time - LU$,TI$

     commodity - CO$

     Number of exporting territories to be compared - N

Key estimated criteria values on the disease and  exporting territories   using the  s c a l e  of the   g r a d e s   from 0 to 10 !:

FOR I=1 TO N

Territory   No.  I   name:      N$(I)

   grade of the disease transmissibility                           - B#(I)

   grade of the disease occurrence                                 - G#(I)

            (For the comparison of risk from affected territories  the occurrence grade must be  m a j o r  than 0 !)

   grade of inability to discover the disease                      - Z#(I)

   grade of inability to avoid new foci                            - S#(I)

   grade of inability to reduce the disease at the territory level - F#(I)

   grade of ineffectiveness of pre-export 'filter'                 - D#(I)

     The values of importance multiplier coefficients are fixed (default) as follows:

            a) disease transmissibility                          = 5

            b) disease occurrence                                = 25

            c) inability to discover the disease                 = 8

            d) inability to avoid new foci of the disease        = 5

            e) inability to reduce occurrence of the disease     = 3

            f) ineffectiveness of pre-export 'filter'            = 10

     Do you accept this coefficients (y) or you will fixe others (o) ? o

     Define other values of importance multiplier coefficients (integers !):

            a) disease transmissibility                           - IGB

            b) disease occurrence                                 - IGE

            c) inability to discover the disease                  - IGZ

            d) inability to avoid new foci of the disease         - IGS

            e) inability to reduce occurrence of the disease      - IGF

            f) ineffectiveness of pre-export 'filter'             - IGD

    RISK COMPARISON OF DISEASE AGENTS INTRODUCTION FROM SEVERAL TERRITORIES

Exporting                Grade of Disease        Grade of  I n a b i l i t y   to

 Territory                 -----------------------        ----------------------------------------            T O T A L

 (with disease          trans-        occur-        disco-    avoid    reduce   avoid

 occurrence)            missi-        rence          ver          new      occur-   agents               r i s k

                                  bility                             disease  foci       rence     'export'             points

        -----------------------------------------------------------------------------------------

        Multiplier         *IGB          *IGE          *IGZ      *IGS      *IGF     *IGD

 -----------------------------------------------------------------------------------------------------------------------

 N$(I)                          B#(I)          G#(I)          Z#(I)     S#(I)      F#(I)      D#(I)              SU#(I)

 

SU#(I)=B#(I)*IGB+G#(I)*IGE+Z#(I)*IGZ+S#(I)*IGS+F#(I)*IGF+D#(I)*IGD

          Territory           Proportion          Percentage

                                   of the total  T  allocated risk points

         N$(I)                   SU#(I)/T           SU#(I)/T*100

         T o t a l                1.0000                100.0000

T = sum of SU#(I)

 

5.5-RISK COMPARISON OF SEVERAL DISEASES INTRODUCTION FROM ONE TERRITORY

This subprogramme compares relative risks of specific diseases agents to be introduced by import from one territory  n o t   f r e e  of these diseases.

   Criteria on diseases and exporting territory situation:

a) grade of disease transmissibility - ability to be propagated

b) grade of disease occurrence - considering prevalence, incidence and spread

c) grade of  i n a b i l i t y  to  d i s c o v e r  all infected animals and   herds (due to insufficient: sensitivity of diagnostic methods used,   animal population investigation grade,  field and laboratory services  capabilities, active field surveys, reporting/information systems, etc.)

d) grade of  i n a b i l i t y   to  a v o i d  disease propagation (new foci)   i.e. inability to protect specific disease free animals, herds and territory   (due to the lack of or insufficient preventive and control field measures)

e) grade of  i n a b i l i t y   to  r e d u c e  disease  o c c u r r e n c e   (due to the lack or insufficient: reduction, elimination and/or eradication   measures, sanitation actions, field and laboratory services, etc.)

f) grade of  i n e f f e c t i v e n e s s  of pre-export  'f i l t e r'   (due to lack or insufficient: pre-export selection, treatment,   investigations and control measures, reliability of veterinary services and   their certificates), considering also eventual  p r e v i o u s   c a s e s    of 'exporting' infected animals or infected/contaminated commodities, etc.

INPUT DATA:

     exporting territory - EX$

     importing territory, time - LU$,TI$

     commodity - CO$

     Number of selected diseases to be compared - N

Key estimated criteria values on the diseases and  exporting territory  using the  s c a l e  of the  g r a d e s  from 0 to 10 !:

FOR I=1 TO N

Disease   No.  I :   name:      N$(I)

   grade of the disease transmissibility                           - B#(I)

   grade of the disease occurrence                                 - G#(I)

   (For the comparison of risk from affected territories  the occurrence grade must be major than 0 (zero risk).

   grade of inability to discover the disease                      - Z#(I)

   grade of inability to avoid new foci                            - S#(I)

   grade of inability to reduce the disease at the territory level - F#(I)

   grade of ineffectiveness of pre-export 'filter'                 - D#(I)

     The values of importance multiplier coefficients are fixed (default) as follows:

            a) disease transmissibility                          = 5

            b) disease occurrence                                = 25

            c) inability to discover the disease                 = 8

            d) inability to avoid new foci of the disease        = 5

            e) inability to reduce occurrence of the disease     = 3

            f) ineffectiveness of pre-export 'filter'            = 10

     Do you accept this coefficients (y) or you will fix others (o) ? o

     Define other values of importance multiplier coefficients (integers !):

            a) disease transmissibility                          - IGB

            b) disease occurrence                                - IGE

            c) inability to discover the disease                 - IGZ

            d) inability to avoid new foci of the disease        - IGS

            e) inability to reduce occurrence of the disease     - IGF

            f) ineffectiveness of pre-export 'filter'            - IGD

  RISK COMPARISON OF SEVERAL DISEASES AGENTS INTRODUCTION FROM ONE TERRITORY

                      Grade    of            Grade of  i n a b i l i t y   to

                      ------------------      -----------------------------------------  T O T A L

 D i s e a s e  trans-  occur-     disco-   avoid    reduce   avoid

                       missi-  rence       ver         new      occur-   agents      r i s k

                       bility                    disease  foc i     rence    'export'     points

        --------------------------------------------------------------------------

        Multiplier *IGB  *IGE     *IGZ      *IGS     *IGF     *IGD

 -----------------------------------------------------------------------------------------------

 N$(I)              B#(I)    G#(I)       Z#(I)      S#(I)     F#(I)    D#(I)       SU#(I)

 

SU#(I)=B#(I)*IGB+G#(I)*IGE+Z#(I)*IGZ+S#(I)*IGS+F#(I)*IGF+D#(I)*IGD

         Disease             Proportion          Percentage

                         of the total  T   allocated risk points

         N$(I)                SU#(I)/T           SU#(I)/T*100

         T o t a l            1.0000                    100.0000

T = sum of SU#(I)

 

5.6-ANIMAL POPULATION MOVEMENT AS POTENTIAL RISK OF DISEASE PROPAGATION

     This subprogramme calculates animal population movement in terms of:  1) combination of distance, time and velocity

INPUT DATA:

     species, category(ies) - ES$,CA$

     territory, period - TER$,PE$

     place(s) of origin, of destination - OP$,DP$

     number of animals moved between origin and destination places - TAM

     purpose (P$): rearing (r), fattening (f) or slaughter (s) or natural (n) ? r

     length measure units                                       - UD$

     time measure units                                         - UT$

Do not answer (skip) the question about the indicator to be calculated; the other two numeric data must be available !

     velocity of the movement per one time measure unit         - V

     distance of the movement in length measure units           - L

     time of the movement in time measure units                 - T

RESULT:

      Estimated velocity of animal movement  per one time measure unit   =  L/T UD$

      Estimated distance of animal movement  during  T  UT$        =  V*T UD$

      Estimated time needed for animal movement  up to the distance of  L  UD$    =  L/V   UT$

 

5.6-ANIMAL POPULATION MOVEMENT AS POTENTIAL RISK OF DISEASE PROPAGATION

     This subprogramme calculates animal population movement in terms of: 1) combination of distance, time and velocity

INPUT DATA:

     species, category(ies) - ES$,CA$

     territory, period - TER$,PE$

     place(s) of origin, of destination - OP$,DP$

     number of animals moved between origin and destination places - TAM

     purpose (P$): rearing (r), fattening (f) or slaughter (s) or natural (n) ? n

     length measure units                                       - UD$

     time measure units                                         - UT$

Do not answer (skip) the question about the indicator to be calculated;   the other two numeric data must be available !

     velocity of the movement per one time measure unit         - V

     distance of the movement in length measure units           - L

     time of the movement in time measure units                 - T

RESULT:

      Estimated velocity of animal movement per one time measure unit   =  L/T UD$

      Estimated distance of animal movement during  T  UT$        =  V*T UD$

      Estimated time needed for animal movement  up to the distance of  L  UD$    =  L/V   UT$

 

5.6-ANIMAL POPULATION MOVEMENT AS POTENTIAL RISK OF DISEASE PROPAGATION

     This subprogramme calculates animal population movement in terms of:  2) indicators related to movement extent, dispersion and convergency

INPUT DATA:

     species, category(ies) - ES$,CA$

     territory, period - TER$,PE$

     place(s) of origin, of destination - OP$,DP$

     number of animals moved between origin and destination places - TAM

     purpose (P$): rearing (r), fattening (f) or slaughter (s) or natural (n) ? s

     distance, duration in days - VZ$,DU

     numbers of places of origin, of destination                - PO,PD

     level (regional, national, international, etc.)   - LM$

     form of movement (transport means, on foot, etc.) - FM$

RESULT:

Ratio destination/origin places (dispersion)                =   PD/PO

 Ratio origin/destination places (convergency)               =   PO/PD

 Average of introduced animals per one destination place     =  TAM/PD

 Average number of introduced animals per one day            =  TAM/DU

 

5.7-ANIMAL PRODUCTS TRANSFER AS POTENTIAL RISK OF DISEASE PROPAGATION

  This subprogramme calculates indicators related to raw animal products transfer (distribution) extent, dispersion and convergency.

INPUT DATA:

     animal product, measure units - ES$,PMU$

     territory framework, period - LU$,PE$

     place(s) of origin, of destination - OP$,DP$

What is the purpose ? Further processing (f), distribution (d) consumption (c), export e) or import (i)  ? e

     amount of the product transferred between origin  and destination places in product measure units       - TAM

     amount of the product produced locally in destination places (territory)       - A

     distance of transfer                                       - L$

     time measure units, duration of transfer                   - UT$,DU

     numbers of places of origin, of destination                - PO,PD

     surface measure units                                      - SMU$

     size of territory of product origin in surface units       - SO

     size of territory of product destination in surface units  - SD

     level (regional, national, international, etc.)   - LM$

     form of transport                                - FM$

RESULT:

Ratio introduced/total (introduced+local) products       =   A/(A+TAM)

 Ratio introduced/local products       =  1 :  A/TAM      =   TAM/A

 Ratio local/introduced products       =  1 :  TAM/A      =   A/TAM

 Ratio destination/origin places (dispersion)             =   PD/PO

 Ratio origin/destination places (convergency)            =   PO/PD

 Ratio destination/origin territories' size               =   SD/SO

 Ratio origin/destination territories' size               =   SO/SD

 Average of introduced product per one destination place  =   TAM/PD PMU$

 Average of introduced product per one time unit          =   TAM/DU PMU$

 

5.7-ANIMAL PRODUCTS TRANSFER AS POTENTIAL RISK OF DISEASE PROPAGATION

  This subprogramme calculates indicators related to raw animal products  transfer (distribution) extent, dispersion and convergency.

INPUT DATA:

     animal product, measure units - ES$,PMU$

     territory framework, period - LU$,PE$

     place(s) of origin, of destination - OP$,DP$

What is the purpose ? Further processing (f), distribution (d) consumption (c), export e) or import (i)  ? d

     amount of the product transferred between origin  and destination places in product measure units       - TAM

     amount of the product produced locally in destination places (territory)       - A

     distance of transfer                                       - L$

     time measure units, duration of transfer                   - UT$,DU

     numbers of places of origin, of destination                - PO,PD

     surface measure units                                      - SMU$

     size of territory of product origin in surface units       - SO

     size of territory of product destination in surface units  - SD

     level (regional, national, international, etc.)   - LM$                                       form of transport   - FM$

RESULT:

Ratio introduced/total (introduced+local) products       =   A/(A+TAM)

 Ratio introduced/local products       =  1 :  A/TAM      =   TAM/A

 Ratio local/introduced products       =  1 :  TAM/A      =   A/TAM

 Ratio destination/origin places (dispersion)             =   PD/PO

 Ratio origin/destination places (convergency)            =   PO/PD

 Ratio destination/origin territories' size               =   SD/SO

 Ratio origin/destination territories' size               =   SO/SD

 Average of introduced product per one destination place  =   TAM/PD PMU$

 Average of introduced product per one time unit          =   TAM/DU PMU$

 

5.8-CONCENTRATION OF ANIMALS AS POTENTIAL RISK OF DISEASE PROPAGATION

This subprogramme calculates simple indicators related to the concentration grade of animals on surface and in volume space of environment:

  1) concentration on known surface space

INPUT DATA:

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     number of animals - A

     type of location [territory(ies), pasture(s), ranch(es), farm(s), stable(s), shed(s), pen(s), box(es), etc.] - TL$

     identification (name) of location(s)                         - ID$

     surface space measure unit (m2, ha, km2, shed, farm, etc.)   - SU$

     known space for all animals in surface measure units         - KS

     standard (norm) value in space units                         - ST#

RESULT:

     Average number of animals per one surface unit     =  A/KS

     Average surface space per one animal               =  KS/A SU$

     Ratio standard to compared space per one animal    =  1 :  (KS/A)/ST#

 

5.8-CONCENTRATION OF ANIMALS AS POTENTIAL RISK OF DISEASE PROPAGATION

       2) concentration on unknown surface space (to be calculated)

 INPUT DATA:

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     number of animals - A

     type of location [territory(ies), pasture(s), ranch(es), farm(s), stable(s), shed(s), pen(s), box(es), etc.] - TL$

     identification (name) of location(s)                         - ID$

     surface space measure unit                                   - SU$                       length measure unit -  LMU$

     length of the space surface                                  - LE                          width (span) of the space surface  - WI

     standard (norm) value in space units                         - ST#

RESULT:

     Average number of animals per one surface unit     =  A/KS

     Average surface space per one animal               =  KS/A SU$

     Ratio standard to compared space per one animal    =  1 :  (KS/A)/ST#

 

5.8-CONCENTRATION OF ANIMALS AS POTENTIAL RISK OF DISEASE PROPAGATION

     3) concentration in known volume space

INPUT DATA:

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     number of animals - A

     type of location (air space in stable, shed, box, etc. or water environment in reservoir, etc.) - TL$

     identification (name) of location(s)                         - ID$

     volume space measure units                                   - VMU$                               known volume space for the animals  - KV

     standard (norm) value in space units                         - ST#

RESULT:

     Average number of animals per one  VMU$               =  A/KV

     Average volume space per one animal                   =  KV/A VMU$

     Ratio standard to compared space per one animal       =  1 :  (KV/A)/ST#

 

5.8-CONCENTRATION OF ANIMALS AS POTENTIAL RISK OF DISEASE PROPAGATION

      4) concentration in unknown volume space

INPUT DATA:

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     number of animals - A

     type of location (air space in stable, shed, box, etc. or water environment in reservoir, etc.) - TL$

     identification (name) of location(s)                         - ID$

     volume space measure units                                   - VMU$                        length measure units  - LMU$

     length, width (span) of the space                            - LE,WI                       height of the space       - H

     standard (norm) value in space units                         - ST#

RESULT:

     Average number of animals per one  VMU$               =  A/KV

     Average volume space per one animal                   =  KV/A VMU$

     Ratio standard to compared space per one animal       =  1 :  (KV/A)/ST#

 

5.9-RISK PROBABILITY ASSESSMENT OF ANIMAL DISEASE PROPAGATION

    This subprogramme calculates a rough risk probability of specific animal disease agents to be spread from existing foci creating new ones.  The input and result interpretation to be based  on theoretical knowledge and practical experience and must make epizootiological sense.   A l l  questions about grades and rates must be answered  and be major than 0 but not major than 1 !

INPUT DATA:

     place, time - PL$,TI$

     disease- DI$                                        animal species - SP$

     definition of focal units - FU$         definition of foci - FO$

Input rates (true, supposed or estimated) and grades   to be expressed as proportions, i.e. numbers between >0 and 1 !.

    True situation in the given territory/population:

prevalence rate of specifically diseased animals                       - DPR

incidence rate of specifically diseased animals                      - IN

prevalence rate of specific disease f o c i                          - PR

incidence rate of specific disease  f o c i                          - FI

t e n d e n c y  of specific epizootic process  -   stagnating (s), increasing (i) or decreasing (d)    ? s

- estimated grade of  i n a b i l i t y   to  r e d u c e  the number of foci due to the lack of effective: field reduction, elimination, and/or eradication measures, sanitation actions, veterinary field and laboratory services, etc.                                        - GR

- estimated grade of  i n a b i l i t y   to  p r o t e c t  disease free part of population (n e w   f o c i)  due to lack of effective: protection measures against the contacts with intrafocal animals and their products or with other etiological agents' sources (vectors, wild animals-reservoirs, etc.), population specific resistance (vaccination), diagnostic methods, veterinary field and laboratory services, etc.   – GP

RESULT:

A=DPR+IN+PR+4*FI

Z=((A*SQR(GR)*SQR(GP)))

W=Z-Z*GT/2    

Risk probability grade of disease propagation can be estimated  to be about   W  i.e. about   W*100 %

 

5.9-RISK PROBABILITY ASSESSMENT OF ANIMAL DISEASE PROPAGATION

INPUT DATA:

     place, time - PL$,TI$

     disease- DI$                                          animal species - SP$

     definition of focal units - FU$            definition of foci - FO$

Input rates (true, supposed or estimated) and grades  to be expressed as proportions, i.e. numbers between >0 and 1 !.

    True situation in the given territory/population:

prevalence rate of specifically diseased animals                       - DPR

incidence rate of specifically diseased animals                      - IN

prevalence rate of specific disease f o c i                          - PR

incidence rate of specific disease  f o c i                          - FI

t e n d e n c y  of specific epizootic process  -   stagnating (s), increasing (i) or decreasing (d)    ? i

- estimated increasing or decreasing  g r a d e  considering the characteristics of specific disease process (interaction

of population-pathogens-environment, development stage), role of influencing factors, p r e v i o u s  propagation intensity etc.  - GT

- estimated grade of  i n a b i l i t y   to  r e d u c e  the number of foci due to the lack of effective: field reduction, elimination, and/or eradication measures, sanitation actions, veterinary field and laboratory services, etc.                                        - GR

- estimated grade of  i n a b i l i t y   to  p r o t e c t  disease free part of population (n e w   f o c i)  due to lack of effective: protection measures against the contacts with intrafocal animals and their products or with other etiological agents' sources (vectors, wild animals-reservoirs, etc.), population specific resistance (vaccination), diagnostic methods, veterinary field and laboratory services, etc.   – GP

RESULT:

A=DPR+IN+PR+4*FI

Z=((A*SQR(GR)*SQR(GP)))

W=Z+Z*GT

      Risk probability grade of disease propagation can be estimated  to be about   W  i.e. about   W*100 %

 

5.9-RISK PROBABILITY ASSESSMENT OF ANIMAL DISEASE PROPAGATION

INPUT DATA:

     place, time - PL$,TI$

     disease- DI$                                             animal species - SP$

     definition of focal units - FU$               definition of foci - FO$

Input rates (true, supposed or estimated) and grades  to be expressed as proportions, i.e. numbers between >0 and 1 !.

    True situation in the given territory/population:

prevalence rate of specifically diseased animals                       - DPR

incidence rate of specifically diseased animals                      - IN

prevalence rate of specific disease f o c i                          - PR

incidence rate of specific disease  f o c i                          - FI

t e n d e n c y  of specific epizootic process  -   stagnating (s), increasing (i) or decreasing (d)    ? d

- estimated increasing or decreasing  g r a d e  considering the characteristics of specific disease process (interaction of population-pathogens-environment, development stage), role of influencing factors, p r e v i o u s  propagation intensity etc.  - GT

- estimated grade of  i n a b i l i t y   to  r e d u c e  the number of foci due to the lack of effective: field reduction, elimination, and/or eradication measures, sanitation actions, veterinary field and laboratory services, etc.                                        - GR

- estimated grade of  i n a b i l i t y   to  p r o t e c t  disease free part of population (n e w   f o c i)  due to lack of effective: protection measures against the contacts with intrafocal animals and their products or with other etiological agents' sources (vectors, wild animals-reservoirs, etc.), population specific resistance (vaccination), diagnostic methods, veterinary field and laboratory services, etc.   – GP

RESULT:

A=DPR+IN+PR+4*FI

Z=((A*SQR(GR)*SQR(GP)))

W=Z-Z*GT/2

         Risk probability grade of disease propagation can be estimated  to be about   W  i.e. about   W*100 %

 

5.10-PER CAPITA FOOD CONSUMPTION AS POTENTIAL RISK OF FOOD-BORN DISEASES

This subprogramme calculates average consumption per one person according to:   1) food

INPUT DATA:

     place, period - PL$,PE$

     total number of persons - IH

     How many data to be processed  - N

FOR I=1 TO N

 List of data - names, units quantity in measure units:

  I:   food, measure units, quantity - P$(I),U$(I),Q#(I)

T = sum of Q#(I)

S = sum of S(I)

RESULT:

     Food               Measure        Quantity            Average

                             Units                                         per Capita

     P$(I)                 U$(I)               Q#(I)                 Q#(I)/IH

 

5.10-PER CAPITA FOOD CONSUMPTION AS POTENTIAL RISK OF FOOD-BORN DISEASES

This subprogramme calculates average consumption per one person according to:  2) place

INPUT DATA:

     place, period - PL$,PE$

     food - PR$                               food measure units - MU$

     How many data to be processed  - N

FOR I=1 TO N

 List of data - names, quantity in measure units:

  I:   place, persons, food quantity - IN$(I),S(I),Q#(I)

T = sum of Q#(I)

S = sum of S(I)

RESULT:

Place             Persons      Quantity     Average        G r a n d      T o t a l

                                           of Food      per Capita      Proportion             %

  IN$(I)            S(I)               Q#(I)        Q#(I)/S(I)         Q#(I)/T         Q#(I)/T*10

  T o t a l         S                      T               T/S                 1.0000             100.0000

 

5.10-PER CAPITA FOOD CONSUMPTION AS POTENTIAL RISK OF FOOD-BORN DISEASES

This subprogramme calculates average consumption per one person according to:  3) time

 INPUT DATA:

     place, period - PL$,PE$

     food - PR$                            food measure units - MU$

     How many data to be processed  - N

FOR I=1 TO N

 List of data - names, quantity in measure units:

  I:   subperiod, persons, food quantity - IN$(I),S(I),Q#(I)

T = sum of Q#(I)

S = sum of S(I)

RESULT:

  Superiod          Persons    Quantity     Average        Grand     T o t a l

                                              of Food       per Capita      Proportion         %

  IN$(I)                   S(I)          Q#(I)          Q#(I)/S(I)        Q#(I)/T      Q#(I)/T*100

  T o t a l                S                  T                T/S               1.0000          100.0000

 

 

 

         6-CONSEQUENCES OF ANIMAL POPULATION HEALTH AND DISEASE

        

         1-Animal health benefit and disease losses in production

         2-Public health consequences of diseases common to animals and man

         3-Losses due to specific disease according to average parameters

         4-Losses due to death and condemnation of animal carcasses

         5-Losses due to diseased animals' utility reduction

         6-Losses due to diseased animals' reproduction deterioration

         7-Inputs' benefit/losses in healthy/diseased animals

         8-Summary tables of losses due to animal population diseases

         9-Cost of animal population health actions

         10-Economic losses due to population health/disease measures' costs

         11-Blanc summary tables of animal population disease consequences

 

 

 6.1-ANIMAL HEALTH BENEFIT AND DISEASE LOSSES IN PRODUCTION

 This programme calculates the benefit/losses in production:   1) using method I. (based on average numbers of production  units per healthy and diseased animals and average

          number of healthy and diseased animals)

     INPUT DATA:

     disease(s) - DI$

     species, category(ies) - C$,D$

     place, period - A$,B$

     production indicator - PR$                                production indicator measure units - E$

     monetary units - F$

     average price of one production measure unit                - G

     average number of production units per one healthy animal   - A

     average number of production units per one diseased animal  - B

     average number of healthy animals                           - C

     average number of diseased animals                          - D

RESULT:

     Estimated production benefit of animal disease free status  =  ((A-B)*C)  production units of value  = ((A-B)*C*G) F$

     Estimated production losses due to animal disease(s)  =   ((A-B)*D)  production units  of value  = ((A-B)*D*G) F$

 

6.1-ANIMAL HEALTH BENEFIT AND DISEASE LOSSES IN PRODUCTION

 This programme calculates the benefit/losses in production:  2) using method II. (based on average number of production   units per animal, per healthy animal and per diseased

          animal and average number of all animals)

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - C$,D$

     place, period - A$,B$

     production indicator - PR$                           production indicator measure units - E$

     monetary units - F$

     average price of one production measure unit                - G

     average number of production units per one animal           - A

     average number of production units per one diseased animal  - B

     average number of production units per one healthy animal   - C

     average number of animals of a given population             - D

RESULT:

     Estimated production benefit of animal disease free status  =   ((A-B)*D)  production units of value  = ((A-B)*D*G) F$

     Estimated production losses due to animal disease(s)  =  ((C-A)*D)  production units  of value  = ((C-A)*D*G) F$

 

6.2-PUBLIC HEALTH CONSEQUENCES OF DISEASES COMMON TO ANIMALS AND MAN

  It includes only consequences which can be quantified in monetary terms.

INPUT DATA:

     disease(s) - E$

     place, period - L$,P$

     monetary units - M$

  1. value of preventive investigations                       - A

  2. value of diseased persons' investigations                - B

  3. value of specific vaccinations                           - C

  4. value of preventive treatments                           - D

  5. value of curative treatments                             - E

  6. value of sanitation actions                              - F

  7. value of hospitalization (except costs mentioned above)  - G

  8. loss due to working incapacity                           - I

  9. cost of specific control measures                        - J

  10. value of compensations and subsidies                    - K

  11. cost of public health services                          - L

  12. cost of public health extension work                    - M

  13. cost of specific research and training                  - N

  14. loss due to epidemiolog. limitations and prohibitions   - O

  15. other costs related to disease(s) and epi. measures     - P

Z = A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P

RESULT:

  L o s s / C o s t   T y p e             M$         Proportion    Percentage

  1.Preventive investigations      A               A/Z            A/Z*100

  2.Dis.persons' investigations    B               B/Z             B/Z*100

  3.Vaccinations                             C               C/Z             C/Z*100

  4.Preventive treatments              D              D/Z             D/Z*100

  5.Curative treatments                  E               E/Z             E/Z*100

  6.Sanitation                                  F                F/Z            F/Z*100

  7.Hospitalization                         G                G/Z            G/Z*100

  8.Working incapacity                 I                 I/Z              I/Z*100

  9.Control measures                     J                 J/Z             J/Z*100

 10.Compensation/subsidies       K               K/Z            K/Z*100

 11.Public health services            L                L/Z             L/Z*100

 12.Public health extension          M              M/Z           M/Z*100

 13.Research and training            N               N/Z             N/Z*100

 14.Epid.limitation/prohibition    O                O/Z            O/Z*100

 15.Others                                       P                P/Z             P/Z*100

    T o t a l                                        Z               1.0000         100.0000

 

6.3-LOSSES DUE TO SPECIFIC DISEASE ACCORDING TO AVERAGE PARAMETERS

(Included quantified losses only)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     lost product, product measure units - PR$,PMU$

     monetary units - F$

absolute (a) or relative (r) data on diseased animals occurrence can be used

     number of specifically diseased animals                      - Z

     number of animals existing in the given period               - A

     percentage of specifically diseased animals                  - M

     average (estimated,standardized) percentage of specific lethality         - L

     average (estimated, standardized) loss in products of one specifically diseased animal in product measure units     - P

     average (estimated, standardized) loss in weight of one  specifically diseased animal in kg                        - I

     average price of one animal of the same species/category     - PA

     average price of one unit of the given product               - PP

     average price of one kg of animal weight                     - PI

RESULT:

        Estimated number of deaths = Y  animals  of value  =   Y*PA  F$

        Estimated loss of ((Z-Y)*P) PMU$  of PR$  of value  =   ((Z-Y)*P*PP)  F$

        Estimated loss of weight   =  (Z-Y)*I kg  of value  =   (Z-Y)*I*PI) F$

        T o t a l  estimated loss    =   ((Y*PA+(Z-Y)*P*PP+(Z-Y)*I*PI))  F$

 

6.4-LOSSES DUE TO DEATH AND CONDEMNATION OF ANIMALS CARCASSES

     This subprogramme calculates losses: 1) in block

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - L$,B$

     average live weight of animals in kg        - PE

     monetary units                              - F$                        average price of one kg of live weight  - PR

     number of naturally dead diseased animals               - M

     number of destroyed diseased and suspect animals        - S

     number of condemned carcasses  of slaughtered diseased animals  - D

RESULT:

K=M+S+D

Q=K*PE

L=K*PE*PR

    Loss Type         Number of    Weight       Value in    Proportion

                                  animals          in kg              F$

    Naturally dead      M                M*PE         M*PE*PR      M/K

    Destroyed              S                 S*PE            S*PE*PR      S/K

    Condemned           D                 D*PE           D*PE*PR      D/K

    T o t a l                   K                     Q                     L            1.000000

 

6.4-LOSSES DUE TO DEATH AND CONDEMNATION OF ANIMALS CARCASSES

     This subprogramme calculates losses:  2) according to space

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - L$,B$

     average live weight of animals in kg        - PE

     monetary units                              - F$                              average price of one kg of live weight  - PR

     number of places               - N

FOR I=1 TO N

  List space or time names, numbers of dead, sanitary destroyed, condemned diseased animals' carcasses:

  I:      PL$(I),   M(I),S(I),D(I)

RESULT:

  P l a c e         Dead      Dest-    Con-       Total                        Weight                         Value in

                       Animals  royed  demned  Number                       in kg                                F$

  PL$(I)            M(I)         S(I)       D(I)   (M(I)+S(I)+D(I))  ((M(I)+S(I)+D(I))*PE)   ((M(I)+S(I)+D(I))*PE*PR)

  T o t a l         M               S           D         M+S+D               (M+S+D)*PE                 (M+S+D)*PE*PR

M = sum of M(I)

S = sum of S(I)

D = sum of D(I)

       P l a c e             L o s t    v a l u e s    in:

                                         Proportion                                                                        Percentage

       PL$(I)      ((M(I)+S(I)+D(I))*PE*PR)/((M+S+D)*PE*PR)     ((M(I)+S(I)+D(I))*PE*PR)/((M+S+D)*PE*PR)*100

       T o t a l                         1.0000                                                                              100.0000

 

6.4-LOSSES DUE TO DEATH AND CONDEMNATION OF ANIMALS CARCASSES

     This subprogramme calculates losses:  3) according to time

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - L$,B$

     average live weight of animals in kg        - PE

     monetary units                              - F$                                      average price of one kg of live weight      - PR

     number of subperiods           - N

FOR I=1 TO N

  List space or time names, numbers of dead,  sanitary destroyed, condemned diseased animals' carcasses:

  I:      PL$(I),   M(I),S(I),D(I)

RESULT:

S u b p e r i o d   Dead     Dest-    Con-           Total                    Weight                                   Value in

                            Animals  royed  demned     Number                  in kg                                           F$

  PL$(I)                 M(I)       S(I)       D(I)     (M(I)+S(I)+D(I))   ((M(I)+S(I)+D(I))*PE)   ((M(I)+S(I)+D(I))*PE*PR)

  T o t a l              M           S            D             M+S+D                  (M+S+D)*PE                (M+S+D)*PE*PR

M = sum of M(I)

S = sum of S(I)

D = sum of D(I)

       S u b p e r i o d         L o s t      v a l u e s         in:

                                         Proportion                                                                  Percentage

       PL$(I)         ((M(I)+S(I)+D(I))*PE*PR)/((M+S+D)*PE*PR)    ((M(I)+S(I)+D(I))*PE*PR)/((M+S+D)*PE*PR)*100

       T o t a l                        1.0000                                                                        100.0000

 

6.5-LOSSES DUE TO DISEASED ANIMALS' UTILITY REDUCTION

     (in terms of selected quantitative or qualitative indicators)

  Indicators' examples:   - period for reaching maturity; body weight gain/loss,  offtake (sales, slaughter, culling), yields (meat, milk, eggs, wool,     honey etc.);

  - production per animal, per monetary unit, per feed unit, per manpower  unit, per space unit (m2,ha,km2,etc.), per time unit, per other input unit;

  - analogical inputs per one production unit;

  - culled animals, weight at a given age, stage of fattening, age/duration  of breeding/fattening to achieve a given body weight;

  - qualitatively classified products, etc.;

  - ability to work, herd composition, etc.

     This subprogramme calculates:  1) One indicator in one place (population)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     monetary units - M$

     selected animal utility indicator - I$                          selected indicator measure units - U$

     price of one unit of selected indicator           - P

     number of diseased animals                        - N

     average value of selected indicator  in measure units   in healthy animals - S              in diseased animals  - E

RESULT:

IF E>S THEN Z=-1 ELSE Z=+1

D=Z*(S-E)

T=D*N

     Difference of average values of I$  between healthy and diseased animals  = D U$

            T o t a l   estimated loss  =  T  U$  of value   = T*P  M$

 

6.5-LOSSES DUE TO DISEASED ANIMALS' UTILITY REDUCTION

     This subprogramme calculates:   2) One indicator in more than one place (population)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     monetary units - M$

     selected animal utility indicator - I$

     selected indicator measure units                  - U$

     price of one unit of selected indicator           - P

     number of data to be processed                    - NN

FOR I=1 to NN

  List of data in following sequence:   subterritory, number of diseased animals,  average value of selected indicator in measure units  in healthy animals, in diseased animals:

     I:     PL$(I),     NDA(I),H(I),D(I)

RESULT:

  Subterritory     Diseased    Average    Average          Total                                 Value of

                            Animals      Value in     Value in           Diffe-                                  Loss in

                             Number      Healthy     Diseased         rence                                      M$

  PL$(I)                NDA(I)         H(I)           D(I)       (NDA(I)*Z*(H(I)-D(I))    ((NDA(I)*Z*(H(I)-D(I))*P))

IF H(I)<D(I) THEN Z=-1 ELSE Z=+1

 Y = sum of ((NDA(I)*Z*(H(I)-D(I))*P))

    T o t a l  value of estimated loss =   Y  M$

 

6.5-LOSSES DUE TO DISEASED ANIMALS' UTILITY REDUCTION

     This subprogramme calculates:  3) More indicators in one place (population)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     monetary units - M$

     number of diseased animals - NDA

     number of indicators to be processed - NN

FOR I=1 TO NN

List of data in following sequence: selected indicator, measure units,   price, average value of selected indicator in measure units  in healthy animals, in diseased animals:

     I:     I$(I),MU$(I),         P(I),H(I),D(I)

RESULT:

Indicator     Units    Price     I  n  d  i  c  a  t  o  r               Total                                  Value of

                                    per       Average in   Average in     Diffe-                                 Loss in

                                   Unit       Healthy         Diseased       rence                                   M$

I$(I)         MU$(I)       P(I)         H(I)                D(I)         Z*(NDA*DIF(I)     (Z*(NDA*DIF(I)))*P(I)

IF H(I)<D(I) THEN Z=-1 ELSE Z=+1

DIF(I)=(H(I)-D(I))

W = sum of (((NDA*Z*(H(I)-D(I))*P(I))))

    T o t a l  value of estimated loss =  W  M$

 

6.5-LOSSES DUE TO DISEASED ANIMALS' UTILITY REDUCTION

     This subprogramme calculates:   4) One indicator in more than one subperiod

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     monetary units - M$

     selected animal utility indicator - I$                              selected indicator measure units - U$

     price of one unit of selected indicator           - P

     number of data to be processed                    - NN

FOR I=1 to NN

  List of data in following sequence:   subperiod name, number of diseased animals,   average value of selected indicator in measure units   in healthy animals, in diseased animals:

     I:     PL$(I),     NDA(I),H(I),D(I)

RESULT:

  Subperiod        Diseased    Average    Average            Total                              Value of

                            Animals      Value in     Value in             Diffe-                              Loss in

                            Number      Healthy      Diseased           rence                               M$

  PL$(I)               NDA(I)           H(I)              D(I)     (NDA(I)*Z*(H(I)-D(I))   ((NDA(I)*Z*(H(I)-D(I))*P))

IF H(I)<D(I) THEN Z=-1 ELSE Z=+1

 Y = sum of ((NDA(I)*Z*(H(I)-D(I))*P))

    T o t a l  value of estimated loss =   Y  M$

 

6.6-LOSSES DUE TO DISEASED ANIMALS' REPRODUCTION DETERIORATION

  (in terms of selected quantitative or qualitative indicators)

Indicators' examples:   fertility rate, number of new born animals, birth rate, new born or weaned   per mother, per a given period, parturition rate, number of offsprings   per parturition, weaning rate, pregnancy rate, non-pregnancy rate, service   period, parturition interval, replacement rate, age at sexual maturity, etc.

     This subprogramme calculates:  1) One indicator in one place (population)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     monetary units - M$

     selected indicator of animal reproduction    - I$                         selected indicator measure units  - U$

     price of one unit of selected indicator      - P

     number of diseased animals                   - N

     average value of selected indicator in   measure units in healthy animals  - S

                                                                                                    in diseased animals  - E

RESULT:    

IF E>S THEN Z=-1 ELSE Z=1

D=Z*(S-E)

T=D*N

       Difference of average values of I$  between healthy and diseased animals   = D U$

                T o t a l  estimated  loss  = T  U$   of value = T*P  M$

 

6.6-LOSSES DUE TO DISEASED ANIMALS' REPRODUCTION DETERIORATION

     This subprogramme calculates:  2) One indicator in more than one place (population)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     monetary units - M$

     selected indicator of animal reproduction    - I$                       selected indicator measure units   - U$

     price of one unit of selected indicator      - P

   number of data to be processed    -NN

FOR I=1 TO NN

  List of data in following sequence:   place name, number of diseased animals,   average value of selected indicator in measure units  in healthy animals, in diseased animals:

    I:      PL$(I),              NDA(I),H(I),D(I)

RESULT:

                              I n d i c a t o r

  Place            Diseased    Average   Average               Total                             Value of

                       Animals      Value in    Value in                Diffe-                             Loss in

                       Number       Healthy    Diseased              rence                              M$

PL$(I)             NDA(I)          H(I)            D(I)       (NDA(I)*Z*(H(I)-D(I)))   (((NDA(I)*Z*(H(I)-D(I))*P))

IF H(I)<D(I) THEN Z=-1 ELSE Z=1

Y = sum of (((NDA(I)*Z*(H(I)-D(I))*P)))

         T o t a l  value of estimated loss = Y  M$

 

6.6-LOSSES DUE TO DISEASED ANIMALS' REPRODUCTION DETERIORATION

     This subprogramme calculates:  3) More indicators in one place (population)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     monetary units - M$

     number of diseased animals - NDA

     number of reproduction indicators to be processed - NN

FOR I=1 TO NN

List of data in following sequence:   selected indicator, measure units,  price, average value of selected indicator in measure units   in healthy animals, in diseased animals:

    I:      I$(I),MU$(I),        P(I),H(I),D(I)

RESULT:

Indicator      Units    Price      I  n  d  i  c  a  t  o  r                       Total                     Value of

                                    per        Average in  Average in               Diffe-                    Loss in

                                    Unit      Healthy        Diseased                  rence                     M$

I$(I)            MU$(I)   P(I)            H(I)              D(I)                 Z*(NDA*DIF(I)   (Z*(NDA*DIF(I)))*P(I)

DIF(I)=(H(I)-D(I))

W = sum of (((NDA*Z*(H(I)-D(I))*P(I))))

         T o t a l  value of estimated loss = W  M$

 

6.6-LOSSES DUE TO DISEASED ANIMALS' REPRODUCTION DETERIORATION

     This subprogramme calculates:  4) One indicator in more than one subperiod

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     monetary units - M$

     selected indicator of animal reproduction    - I$                       selected indicator measure units  - U$

     price of one unit of selected indicator      - P

   number of data to be processed    -NN

FOR I=1 TO NN

  List of data in following sequence:   subperiod name, number of diseased animals,  average value of selected indicator in measure units  in healthy animals, in diseased animals:

    I:      PL$(I),              NDA(I),H(I),D(I)

RESULT:

  Subperiod        Diseased   Average     Average                   Total                            Value of

                            Animals     Value in      Value in                    Diffe-                            Loss in

                                                Healthy      Diseased                  rence                             M$

PL$(I)                  NDA(I)         H(I)             D(I)         (NDA(I)*Z*(H(I)-D(I)))  (((NDA(I)*Z*(H(I)-D(I))*P))

IF H(I)<D(I) THEN Z=-1 ELSE Z=1

Y = sum of (((NDA(I)*Z*(H(I)-D(I))*P)))

         T o t a l  value of estimated loss = Y  M$

 

6.7-INPUTS' BENEFIT/LOSSES IN HEALTHY/DISEASED ANIMALS

 This programme calculates the benefit/losses in inputs: 1) using method I. (based on average number of healthy and diseased  animals and average inputs in healthy and diseased animals)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     production input indicator - I$                                           input indicator measure units   - U$

     monetary units                                          - M$

     price of one measure unit of input indicator            - P

     average production input in indicator measure units

                                 a) per one healthy animal   - B

                                 b) per one diseased animal  - A

     average number of healthy animals in the population     - C

     average number of diseased animals in the population    - D

RESULT:

      Estimated benefit due to minor inputs in C  healthy animals =   (A-B)*C  U$ of I$  of value  =  (A-B)*C*P  M$

      Estimated loss due to major inputs in  D  diseased animals   =   (A-B)*D  U$  of I$  of value  =  (A-B)*D*P  M$

 

6.7-INPUTS' BENEFIT/LOSSES IN HEALTHY/DISEASED ANIMALS

 This programme calculates the benefit/losses in inputs:  2) using method II. (based on number of diseased animals  and average inputs in healthy and diseased animals)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     production input indicator - I$                                      input indicator measure units  - U$

     monetary units                                          - M$

     price of one measure unit of input indicator            - P

     total number of diseased animals                        - N

     average production input in indicator measure units  per one healthy animal  - S

                                                                                                  per one diseased animal  - E

RESULT:

D=E-S

T=D*N

    Average difference of I$  values  between healthy and diseased animals = D  U$  = D*P  M$

         Estimated total loss =  T  U$  of value  =  T*P  M$

 

6.7-INPUTS' BENEFIT/LOSSES IN HEALTHY/DISEASED ANIMALS

 This programme calculates the benefit/losses in inputs: 3) using method III. (based on average number of all animals and   average inputs in all, healthy and diseased animals)

INPUT DATA:

     disease(s) - E$

     species, category(ies) - C$,D$

     place, period - A$,B$

     production input indicator - I$                                       input indicator measure units  - U$

     monetary units                                          - M$

     price of one measure unit of input indicator            - P

     average production input in indicator measure units  per one animal in the given population  - F

                                    per one diseased animal  - A

                                     per one healthy animal  - B

     average total number of animals of the given population - G

RESULT:

   Estimated benefit due to minor inputs in production by healthy animals =   (A-F)*G  U$  of I$   of value  = (A-F)*G*P  M$

   Estimated loss due to major inputs in production by diseased animals =   (F-B)*G  U$  of I$  of value  =  (F-B)*G*P  M$

 

6.8-SUMMARY TABLES OF LOSSES DUE TO ANIMAL POPULATION DISEASES

 This subprogramme calculates summary tables on:  1) losses according to animal diseases

INPUT DATA:

     species, category(ies) - SP$,CA$

     place, period - PL$,PE$

     types of losses, measure units - LO$,MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data, values in measure units:

     I:     disease, losses value     -  D$(I),  L(I)

T = sum of L(I)

L O S S E S   D U E  T O   A N I M A L   P O P U L A T I O N   D I S E A S E S

     Disease(s)              L o s s e s    Proportion   Percentage

                                      Value in

                                        MU$

     D$(I)                          L(I)                L(I)/T         L(I)/T*100

     T o t a l                      T                   1.0000          100.0000

 

6.8-SUMMARY TABLES OF LOSSES DUE TO ANIMAL POPULATION DISEASES

 This subprogramme calculates summary tables on:  2) losses according to animal species

INPUT DATA:

     disease(s) - DI$

     place, period - PL$,PE$

     types of losses, measure units - LO$,MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data, values in measure units:

     I:     species, losses value     -  D$(I),  L(I)

T = sum of L(I)

L O S S E S   D U E  T O   A N I M A L   P O P U L A T I O N   D I S E A S E S

     Species                 L o s s e s    Proportion   Percentage

                                    Value in

                                    MU$

     D$(I)                       L(I)                 L(I)/T         L(I)/T*100

     T o t a l                   T                    1.0000          100.0000

 

6.8-SUMMARY TABLES OF LOSSES DUE TO ANIMAL POPULATION DISEASES

 This subprogramme calculates summary tables on:  3) losses according to place

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, period - PL$,PE$

     types of losses, measure units - LO$,MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data, values in measure units:

     I:     place, losses value       -  D$(I),  L(I)

T = sum of L(I)

L O S S E S   D U E  T O   A N I M A L   P O P U L A T I O N   D I S E A S E S

     Place                   L o s s e s    Proportion   Percentage

                                 Value in

                                   MU$

     D$(I)                      L(I)               L(I)/T          L(I)/T*100

     T o t a l                  T                  1.0000          100.0000

 

6.8-SUMMARY TABLES OF LOSSES DUE TO ANIMAL POPULATION DISEASES

 This subprogramme calculates summary tables on:   4) losses according to time

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, period - PL$,PE$

     types of losses, measure units - LO$,MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data, values in measure units:

     I:     subperiod, losses value   -  D$(I),  L(I)

T = sum of L(I)

L O S S E S   D U E  T O   A N I M A L   P O P U L A T I O N   D I S E A S E S

     Subperiod               L o s s e s    Proportion   Percentage

                                       Value in

                                        MU$

     D$(I)                           L(I)                L(I)/T          L(I)/T*100

     T o t a l                       T                   1.0000           100.0000

 

6.8-SUMMARY TABLES OF LOSSES DUE TO ANIMAL POPULATION DISEASES

 This subprogramme calculates summary tables on:   5) losses according to their types

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, period - PL$,PE$

     types of losses, measure units - LO$,MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data, values in measure units:

     I:     loss type, loss value  -  D$(I),  L(I)

T = sum of L(I)

L O S S E S   D U E  T O   A N I M A L   P O P U L A T I O N   D I S E A S E S

     Loss type               L o s s e s    Proportion   Percentage

                                      Value in

                                       MU$

     D$(I)                          L(I)                 L(I)/T        L(I)/T*100

     T o t a l                      T                   1.0000         100.0000

 

6.9-COST OF ANIMAL POPULATION HEALTH ACTIONS

INPUT DATA:

     action type(s) - T$

     place, period - A$,B$

     monetary units - M$

     veterinary material or service - PS$

     measure units of veterinary material or service      - PU$

     total number of actions                              - A

     average dose (consumption) of the material  for one action in measure units    - D

     price of one measure unit of the material            - P

     average time needed for one action in minutes (including preparatory activity)   - T

     personnel average salary per one hour                - S

     transport average cost for one action                - R

     total other costs for the given actions              - O

RESULT:

         Total consumption of the used material    =  A*D       PU$

         Total cost of used material               =  A*D*P     M$

         Total time consumed                       =  A*T/60    hours

         Total salaries                            =  A*T/60*S  M$

         Total transport cost                      =  A*R       M$

         Other costs                               =  O         M$

         T o t a l  costs    =  ((A*D*P)+(A*T/60*S)+A*R+O)      M$

 

6.10-ECONOMIC LOSSES DUE TO ANIMAL POPULATION HEALTH/DISEASE MEASURES' COSTS

INPUT DATA:

     disease(s) - E$

     species, category(ies) - S$,C$

     place, period - L$,P$

     monetary units - M$

     1.total value of animals naturally dead due to disease        - A

     2.total value of condemned slaughtered animals                - B

     3.total value of condemned products of animal origin          - C

     4.total value of lost liveweight                              - D

     5.total value of non-born animals                             - E

     6.total value of non-produced animal products                 - F

     7.total value of loss due to minor quality of animal products - G

     8.total value of feeds non-converted in animal products       - I

     9.total value of loss due to trade/export limitations         - J

     10.total value of compensations and subsidies                 - K

     11.cost of vet. services (diagnosis, treatment, control, etc.)   - L

     12.cost of veterinary material (vaccines, drugs, equipment, etc.)- M

     13.total cost of non-veterinary manpower and services         - N

     14.total cost of transport related to epi. measures           - O

     15.other total costs related to disease(s) and epi. measures  - P

Z = A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P

ECONOMIC LOSSES DUE TO ANIMAL POPULATION HEALTH/DISEASE MEASURES' COSTS

  L o s s / C o s t   T y p e                      M$      Proportion    Percentage

  1.Naturally dead animals                    A              A/Z             A/Z*100

  2.Condemnation of carcass                B              B/Z              B/Z*100

  3.Condemnation of products             C              C/Z              C/Z*100

  4.Lost of live weight                            D              D/Z             D/Z*100

  5.Non-born animals                              E              E/Z              E/Z*100

  6.Non-produced products                   F              F/Z              F/Z*100

  7.Reduction of products quality        G              G/Z              G/Z*100

  8.Feeds non-converted in products   I              I/Z                I/Z*100

  9.Trade/export limitations                    J              J/Z               J/Z*100

 10.Compensation/subsidies                 K             K/Z              K/Z*100

 11.Veterinary services                           L              L/Z              L/Z*100

 12.Veterinary material                            M            M/Z             M/Z*100

 13.Non-vet. manpower/services          N             N/Z              N/Z*100

 14.Transport related measures            O              O/Z             O/Z*100

 15.Others                                                 P              P/Z              P/Z*100

    T o t a l   L o s s                                   Z           1.0000            100.0000

 

6.11-BLANC SUMMARY TABLES OF ANIMAL POPULATION DISEASE CONSEQUENCES

     This subprogramme processes different data on consequences  of animal population disease in form of summary table and graph:

         1) total values of individual consequences

 INPUT DATA:

     disease(s) - E$

     species, category(ies) - S$,C$

     place, period - L$,P$

     measure units - M$

     Data/lines to be processed  - N

FOR I=1 TO N

     List data - consequence type, total value:

         I:        A$(I),  A(I)

A N I M A L   P O P U L A T I O N   D I S E A S E   C O N S E Q U E N C E S

Z = sum of A(I)

     Consequence T y p e           Value in        Proportion      Percentage

                                                          M$

 I   A$(I)                                          A(I)                A(I)/Z          A(I)/Z*100

     T o t a l                                        Z                   1.0000           100.0000

 

6.11-BLANC SUMMARY TABLES OF ANIMAL POPULATION DISEASE CONSEQUENCES

     This subprogramme processes different data on consequences  of animal population disease in form of summary table and graph:

         2) individual consequences based on average values

INPUT DATA:

     disease(s) - E$

     species, category(ies) - S$,C$

     place, period - L$,P$

     measure units - M$

     Data/lines to be processed  - N

FOR I=1 TO N

     List data - consequence type, units name,  number of units, average value in measure units:

         I:       A$(I),U$(I),    NU(I),AV(I)

A N I M A L   P O P U L A T I O N   D I S E A S E   C O N S E Q U E N C E S

Z = Z sum of (NU(I)*AV(I))

  Consequence type  Units        Number   One unit     Total                      Percentage

                                     Name         of            Value in      Loss in

                                                       Units           M$             M$

  A$(I)                          U$(I)         NU(I)        AV(I)        NU(I)*AV(I)   ((NU(I)*AV(I))/Z)*100

  T o t a l                                                                                 Z                          100.0000

 

 

 

      7-INVESTIGATIONS OF ANIMAL POPULATION HEALTH SITUATION

        

         1-Evaluation of diagnostic method quality

         2-Indicators of animal population investigation grade

         3-Proportions of different types of diagnostic tests

         4-Infectious disease evidence and notification grades

         5-Positivity and negativity of test results

         6-Agreement between test results of two investigators

         7-Concordance grade of compared tests' results

         8-Summary table of animal disease investigations

         9-Summary table of animal disease investigation results

         10-Population/sample multi-etiological investigations

         11-Testing parasitic diseases extensity and intensity

         12-Testing infection intensity grading in animals

         13-Comparison of two tests acc. specificity/sensitivity

         14-Relationship of positively and negatively tested animals

 

 

7.1-EVALUATION OF DIAGNOSTIC METHOD QUALITY

INPUT DATA:

     diagnostic method - MD$

     species - SP$                               category(ies) - CA$

     place - P$                                      time - T$

           number of true positive results     - A

           number of false positive results    - B

           number of false negative results    - C

           number of true negative results     - D

RESULT:

   Sensitivity (detectability) of diagnostic method  =  A/(A+C)  =  A/(A+C)*100 %

   Specificity of diagnostic method                            =  D/(D+B)   =  D/(D+B)*100 %

   Predictive value of true positive results                =  A/(A+B)  =  A/(A+B)*100 %

   Predictive value of true negative results               =  D/(D+C)  =  D/(D+C)*100 %

   Predictive value of false positive results               =  B/(A+B)   =  B/(A+B)*100 %

   Predictive value of false negative results              =  C/(C+D)  =  C/(C+D)*100 %

   Diagnostic method true results rate (accuracy)    =  (A+D)/(A+B+C+D)

   Diagnostic method false results rate (inaccuracy) =  (B+C)/(A+B+C+D)

   Diagnostic method efficiency index                        =  (A/(A+C))*(D/(D+B))

 

7.2-INDICATORS OF ANIMAL POPULATION INVESTIGATION GRADE

INPUT DATA:

     investigation objectives - OB$

     diagnostic test - MD$

     v a l u e  of diagnostic method efficiency index  (in form of a number between >0 and 1 !)  - D

     species - SP$                     category(ies) - CA$

     place - LU$                         time - TI$

     total number of animals of the given population      - A

     total number of tested animals                       - B

     total number of tests (investigations)               - C

     number of specifically diseased animals              - E

     number of animals in specific disease foci           - F

     number of exposed specifically healthy animals  outside of foci      - S

     number of newly discovered cases (diseased animals)  - N

RESULT:

          Tested animals rate                                                           =  B/A

          Percentage of tested animals                                           =  (B/A)*100

          Ratio of tested/diseased animals                                    =  B/E

          Ratio of diseased/tested animals                                    =  E/B

          Ratio of tested/intrafocal animals                                   =  B/F

          Ratio of tested/exposed healthy animals                       =  B/(S+F-E)

          Ratio of tests/population                                                  =  C/A

          Ratio of tests/investigated animals  (retesting rate)    =  C/B

          Ratio of tests/newly discovered cases                          =  C/N

          Animal population investigation grade                         =  (B/A)*D

 

7.3-PROPORTIONS OF DIFFERENT TYPES OF DIAGNOSTIC TESTS

INPUT DATA:

     testing object/objective - O$

     place - PL$                                    time - TI$

     number of diagnostic test types - N

FOR I=1 TO N

           List of data:

     I:    test, number of investigations -  M$(I),  X(I)

T = sum of X(I)

RESULT:

    Test                Number of        Proportion     Percentage

                          investigations

    M$(I)               X(I)                     X(I)/T           X(I)/T*100

    T o t a l             T                       1.0000             100.0000

 

7.4-INFECTIOUS DISEASE EVIDENCE AND NOTIFICATION GRADES

     This programme calculates evidence/notification of  1) specifically infected animals

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, time - LU$,TI$

     total number of specifically infected animals             - A

     number of clinically recognized infected animals          - B

     number of microbiologically recognized infected animals   - C

     number of serologically recognized infected animals       - D

     number of allergically recognized infected animals        - E

     number of haematologically recognized infected animals    - G

     number of pathologically recognized infected animals      - H

     number of infected animals recognized by other method(s)  - I

     number of notified infected animals                       - F

RESULT:

     Specifically infected animals evidence/notification rates:

             Clinical evidence rate                      =    B/A

             Microbiological evidence rate       =    C/A

             Serological evidence rate               =    D/A

             Allergic evidence rate                     =    E/A

             Haematological evidence rate        =    G/A

             Pathological evidence rate             =    H/A

             Other method evidence rate           =    I/A

           Specific disease notification rate     =    F/A

 

7.4-INFECTIOUS DISEASE EVIDENCE AND NOTIFICATION GRADES

     This programme calculates evidence/notification of   2) outbreaks (foci) of specific disease

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - SP$,CA$

     place, time - LU$,TI$

     total number of specific disease(s) outbreaks (foci)      - A

     number of clinically recognized outbreaks                 - B

     number of microbiologically recognized outbreaks          - C

     number of serologically recognized outbreaks              - D

     number of allergically recognized outbreaks               - E

     number of haematologically recognized outbreaks           - G

     number of pathologically recognized outbreaks             - H

     number of outbreaks recognized by other method(s)         - I

     number of notified specific outbreaks                     - F

RESULT:

     Specific disease outbreaks evidence/notification rates:

             Clinical evidence rate                      =    B/A

             Microbiological evidence rate       =    C/A

             Serological evidence rate               =    D/A

             Allergic evidence rate                     =    E/A

             Haematological evidence rate        =    G/A

             Pathological evidence rate             =    H/A

             Other method evidence rate          =    I/A

     Specific disease outbreaks notification rate    =    F/A

 

7.5-POSITIVITY AND NEGATIVITY OF INVESTIGATIONS RESULTS

INPUT DATA:

     investigation test - EX$

     species, category(ies) - SP$,CA$

     place, time - LU$,TI$

        number of tested animals                              - A

        number of tested animals with positive result         - B

        number of tested animals with indeterminate result    - C

        number of tested animals with negative result         - D

        number of tests (investigations)                      - E

        number of positive tests                              - F

        number of indeterminate tests                         - G

        number of negative tests                              - H

        number of animals found healthy                       - I

        number of animals found indeterminate                 - J

        number of animals found diseased                      - K

RESULT:

          Positively tested animals rate                     =  B/A

          Indeterminately tested animals rate           =  C/A

          Indeterminately tested animals rate           =  (A-B-D)/A

          Negatively tested animals rate                   =  D/A

          Negatively tested animals rate                   =  (A-B-C)/A

          Positive tests rate                                         =  F/E

          Indeterminate tests rate                               =  G/E

          Indeterminate tests rate                               =  (E-F-H)/E

          Negative tests rate                                       =  H/E

          Negative tests rate                                       =  (E-F-G)/E

          Rate of tested animals found healthy       =  I/A

          Rate of tested animals found healthy       =  (A-J-K)/A

          Rate of tested animals found indeterminate    =  J/A

          Rate of tested animals found diseased     =  K/A

          Rate of tested animals found diseased        =  (A-I-J)/A

 

7.6-AGREEMENT BETWEEN TEST RESULTS OF TWO INVESTIGATORS                                                                             (Ref.:Martin et al., p.73-75)

     (comparison of results obtained in the same animals  or in the same samples by two investigators - A and B)

INPUT DATA:

     objectives of investigation - OI$

     test type - EX$

     animals/specimens - AN$

     place, time - LU$,TI$

     investigators A,B - IA$,IB$

       number of identical negative results by A and B          - N11

       number of results: dubious by A and negative by B        - N12

       number of results: positive by A and negative by B       - N13

       number of results: negative by A and dubious by B        - N21

       number of identical dubious results by A and B           - N22

       number of results: positive by A and dubious by B        - N23

       number of results: negative by A and positive by B       - N31

       number of results: dubious y A and positive by B         - N32

       number of identical positive results by A and by B       - N33

N = N11+N12+N13+N21+N22+N23+N31+N32+N33

PO = (N11+N22+N33)/N

N01=N11+N21+N31

N02=N12+N22+N32

N03=N13+N23+N33

N10=N11+N12+N13

N20=N21+N22+N23

N30=N31+N32+N33

PC=((N10*N01)+(N20*N02)+(N30*N03))/N^2

IF PO=<0            The result shows an absolute disagreement.

IF PO=>1            The result shows an absolute agreement.

IF PO<=0.4          The result shows a strong disagreement.

IF PO<=0.8          The result shows an elevated disagreement.

IF PO<=0.95         The result shows a limited disagreement.

IF PO>0.95          The result shows a very limited disagreement.

RESULT:

     Grade of agreement between test results of the two investigators   =  PO  =  PO*100 %

K=(PO-PC)/(1-PC)

     Intra-groupal correlation coefficient - kappa      =  K

OPA=(N11+N33)/N

AP1=(N33+N31)/N

AP2=(N33+N13)/N

CPA=(AP1*AP2)+((1-AP2)*(1-AP1))

     Chance proportion agreement (both +)               =   AP1*AP2

     Chance proportion agreement (both -)               =   (1-AP2)*(1-AP1)

     Chance proportion agreement                        =   CPA

     Observed minus chance agreement                    =   OPA-CPA

     Maximum possible agreement beyond chance level     =   (1-CPA)

 

7.7-CONCORDANCE OF COMPARED TESTS RESULTS                                                                                                       (Ref.: Martin et al.,p.73-75)

     (comparison of results obtained in the same animals or in the same samples using two different tests - A and B)

INPUT DATA:

     investigation type - IN$

     animals/specimens - SP$

     place, time - PL$,TI$

     test A,B - MA$,MB$

       number of identical negative results by A and B          - N11

       number of results: dubious by A and negative by B        - N12

       number of results: positive by A and negative by B       - N13

       number of results: negative by A and dubious by B        - N21

       number of identical dubious results by A and B           - N22

       number of results: positive by A and dubious by B        - N23

       number of results: negative by A and positive by B       - N31

       number of results: dubious y A and positive by B         - N32

       number of identical positive results by A and by B       - N33

N=N11+N12+N13+N21+N22+N23+N31+N32+N33

C=(N11+N22+N33)

N01=N11+N21+N31

N02=N12+N22+N32

N03=N13+N23+N33

N10=N11+N12+N13

N20=N21+N22+N23

N30=N31+N32+N33

PC=((N10*N01)+(N20*N02)+(N30*N03))/N^2

PO=(N11+N22+N33)/N

IF PO=<0            The result shows an absolute disagreement.

IF PO=>1            The result shows an absolute agreement.

IF PO<=0.4          The result shows a strong disagreement.

IF PO<=0.8          The result shows an elevated disagreement.

IF PO<=0.95         The result shows a limited disagreement.

IF PO>0.95          The result shows a very limited disagreement.

RESULT:

     Concordance grade of results obtained   by two different tests   =  C/N  =  C/N*100 %

K=(PO-PC)/(1-PC)

     Intragroupal correlation coefficient - kappa         =  K

OPA=(N11+N33)/N

AP1=(N33+N31)/N

AP2=(N33+N13)/N

CPA=(AP1*AP2)+((1-AP2)*(1-AP1))

     Chance proportion agreement (both +)               =   AP1*AP2

     Chance proportion agreement (both -)               =   (1-AP2)*(1-AP1)

     Chance proportion agreement                        =   CPA

     Observed minus chance agreement                    =   OPA-CPA

     Maximum possible agreement beyond chance level     =   (1-CPA)

 

7.8-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATIONS

     This subprogramme calculates summary tables of:  1) investigations according to diseases

INPUT DATA:

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of investigations - LO$

     measure units - MU$

     How many data to be processed    - N

FOR I=1 TO N

    List of data:

           I:    disease, number of investigations - D$(I),  L(I)

     ANIMAL  POPULATION  HEALTH/DISEASE  INVESTIGATIONS

     Disease                 Investigations   Proportion      Percentage

  I  D$(I)                                L(I)                L(I)/T           L(I)/T*100

     T o t a l                            T                   1.0000            100.0000

T = sum of L(I)

 

7.8-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATIONS

     This subprogramme calculates summary tables of:   2) investigations according to species/category(ies)

INPUT DATA:

     disease(s) - DI$

     place, period - PL$,PE$

     type of investigations - LO$

     measure units - MU$

     How many data to be processed    - N

FOR I=1 TO N

    List of data:

           I:    species/categ., number of investigations - D$(I),  L(I)

     ANIMAL  POPULATION  HEALTH/DISEASE  INVESTIGATIONS

     Species/category(ies)   Investigations   Proportion      Percentage

  I   D$(I)                                        L(I)                 L(I)/T            L(I)/T*100

     T o t a l                                      T                   1.0000             100.0000

T = sum of L(I)

 

7.8-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATIONS

     This subprogramme calculates summary tables of:  3) investigations according to space/territory

INPUT DATA:

     disease(s) - DI$

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of investigations - LO$

     measure units - MU$

     How many data to be processed    - N

FOR I=1 TO N

    List of data:

           I:    subterritory, number of investigations - D$(I),  L(I)

     ANIMAL  POPULATION  HEALTH/DISEASE  INVESTIGATIONS

     Subterritory            Investigations   Proportion      Percentage

  I     D$(I)                             L(I)                  L(I)/T           L(I)/T*100

     T o t a l                             T                    1.0000             100.0000

T = sum of L(I)

 

7.8-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATIONS

     This subprogramme calculates summary tables of:  4) investigations according to time series

INPUT DATA:

     disease(s) - DI$

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of investigations - LO$

     measure units - MU$

     How many data to be processed    - N

FOR I=1 TO N

    List of data:

           I:    subperiod, number of investigations - D$(I),  L(I)

     ANIMAL  POPULATION  HEALTH/DISEASE  INVESTIGATIONS

     Subperiod               Investigations   Proportion      Percentage

  I  D$(I)                                 L(I)                 L(I)/T           L(I)/T*100

     T o t a l                             T                    1.0000           100.0000

T = sum of L(I)

 

7.8-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATIONS

     This subprogramme calculates summary tables of:  5) investigations according to their types

INPUT DATA:

     disease(s) - DI$

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     measure units - MU$

     How many data to be processed    - N

FOR I=1 TO N

    List of data:

           I:    test type, number of investigations - D$(I),  L(I)

     ANIMAL  POPULATION  HEALTH/DISEASE  INVESTIGATIONS

     Test type               Investigations   Proportion      Percentage

  I    D$(I)                               L(I)                L(I)/T           L(I)/T*100

     T o t a l                            T                    1.0000           100.0000

T = sum of L(I)

 

7.9-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATION RESULTS

     This subprogramme calculates summary tables of:  1) investigation results according to diseases/forms

INPUT DATA:

     diseases' group - DI$

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of investigations - LO$

     measure units - MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data:

     I:    disease/form - D$(I)

                  number of investigations, positive results - L(I),P(I)

T = sum of L(I)

TP = sum of P(I)

     ANIMAL  POPULATION  DISEASE  INVESTIGATION  RESULTS

     Disease                 Investi-     Positive       % of Pos.           % of Total

                                    gations     Results        Results               Pos.Results

 I    D$(I)                        L(I)            P(I)          P(I)/L(I)*100       P(I)/TP*100

     T o t a l                     T               TP            TP/T*100             100.0000

 

7.9-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATION RESULTS

     This subprogramme calculates summary tables of:  2) investigation results according to species/category(ies)

INPUT DATA:

     disease(s) - DI$

     place, period - PL$,PE$

     type of investigations - LO$

     measure units - MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data:     I:    species/category(ies) - D$(I)

                  number of investigations, positive results - L(I),P(I)

T = sum of L(I)

TP = sum of P(I)

     ANIMAL  POPULATION  DISEASE  INVESTIGATION  RESULTS

     Species/category(ies)   Investi-    Positive     % of Pos.        % of Total

                                              gations     Results      Results           Pos.Results

 I   D$(I)                                   L(I)           P(I)         P(I)/L(I)*100    P(I)/TP*100

     T o t a l                               T              TP           TP/T*100           100.0000

 

7.9-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATION RESULTS

     This subprogramme calculates summary tables of:   3) investigation results according to space/territory

INPUT DATA:

     disease(s) - DI$

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of investigations - LO$

     measure units - MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data:     I:    subterritory - D$(I)

                  number of investigations, positive results - L(I),P(I)

T = sum of L(I)

TP = sum of P(I)

     ANIMAL  POPULATION  DISEASE  INVESTIGATION  RESULTS

     Subterritory            Investi-    Positive      % of Pos.           % of Total

                                      gations     Results        Results             Pos.Results

 I   D$(I)                             L(I)        P(I)         P(I)/L(I)*100         P(I)/TP*100

     T o t a l                         T            TP            TP/T*100              100.0000

 

7.9-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATION RESULTS

     This subprogramme calculates summary tables of:   4) investigation results according to time series

INPUT DATA:

     disease(s) - DI$

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of investigations - LO$

     measure units - MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data:     I:    subperiod - D$(I)

                  number of investigations, positive results - L(I),P(I)

T = sum of L(I)

TP = sum of P(I)

     ANIMAL  POPULATION  DISEASE  INVESTIGATION  RESULTS

     Subperiod               Investi-    Positive      % of Pos.        % of Total

                                      gations     Results       Results           Pos.Results

 I   D$(I)                            L(I)          P(I)        P(I)/L(I)*100      P(I)/TP*100

     T o t a l                         T             TP          TP/T*100            100.0000

 

7.9-SUMMARY TABLES OF ANIMAL DISEASE INVESTIGATION RESULTS

     This subprogramme calculates summary tables of:  5) investigation results according to tests used

 INPUT DATA:

     disease(s) - DI$

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     How many data to be processed - N

FOR I=1 TO N

     List of data:     I:    test type - D$(I)

                  number of investigations, positive results - L(I),P(I)

T = sum of L(I)

TP = sum of P(I)

     ANIMAL  POPULATION  DISEASE  INVESTIGATION  RESULTS

     Test type               Investi-    Positive       % of Pos.          % of Total

                                     gations     Results        Results             Pos.Results

 I   D$(I)                          L(I)           P(I)         P(I)/L(I)*100        P(I)/TP*100

     T o t a l                       T              TP            TP/T*100            100.0000

 

7.10-SUMMARY TABLES OF MULTI-ETIOLOGICAL INVESTIGATIONS   OF A GIVEN POPULATION/SAMPLE

     This subprogramme calculates summary tables on: 1) field investigations results of a given population (herd, flock)

INPUT DATA:

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of investigations - LO$

     criterion for positivity - MU$

     total number of investigated animals/specimens              - NU

     How many diseases - data to be processed                    - N

FOR I=1 TO N

           List of data:     I:    disease, positive results - D$(I),   P(I)

TP = sum of P(I)

     MULTI-ETIOLOGICAL  INVESTIGATIONS  OF  A  GIVEN  POPULATION/SAMPLE

         Disease(s)                    Number of       % of                 % of Total

                                                  Positive       Positive              Positive

                                                  Results        Results               Results

   I     D$(I)                                   P(I)          P(I)/NU*100     P(I)/TP*100

         T o t a l                               TP                                         100.0000

 

7.10-SUMMARY TABLES OF MULTI-ETIOLOGICAL INVESTIGATIONS  OF A GIVEN POPULATION/SAMPLE

     This subprogramme calculates summary tables on:   2) laboratory investigations results of a given set of specimens

INPUT DATA:

     place, period - PL$,PE$

     specimen, category(ies) - SP$,CA$

     type of investigations - LO$

     criterion for positivity - MU$

     total number of investigated animals/specimens              - NU

     How many diseases - data to be processed                    - N

FOR I=1 TO N

           List of data:     I:    disease, positive results - D$(I),   P(I)

TP = sum of P(I)

     MULTI-ETIOLOGICAL  INVESTIGATIONS  OF  A  GIVEN  POPULATION/SAMPLE

         Disease(s)                    Number of          % of                     % of Total

                                                 Positive           Positive                  Positive

                                                 Results            Results                   Results

   I     D$(I)                                  P(I)             P(I)/NU*100           P(I)/TP*100

         T o t a l                             TP                                                  100.0000

 

7.10-SUMMARY TABLES OF MULTI-ETIOLOGICAL INVESTIGATIONS   OF A GIVEN POPULATION/SAMPLE

     This subprogramme calculates summary tables on: 3) slaughterhouse  investigations results of a given animal group

INPUT DATA:

     place, period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of investigations - LO$

     criterion for positivity - MU$

     total number of investigated animals/specimens              - NU

     How many diseases - data to be processed                    - N

FOR I=1 TO N

           List of data:     I:    disease, positive results - D$(I),   P(I)

TP = sum of P(I)

     MULTI-ETIOLOGICAL  INVESTIGATIONS  OF  A  GIVEN  POPULATION/SAMPLE

         Disease(s)                    Number of        % of              % of Total

                                               Positive             Positive        Positive

                                               Results              Results         Results

   I     D$(I)                                P(I)             P(I)/NU*100    P(I)/TP*100

         T o t a l                           TP                                         100.0000´

 

7.11-TESTING PARASITIC DISEASES EXTENSITY AND INTENSITY

This subprogramme calculates the extensity (proportion of animals with specific parasites) and intensity (average number of parasites in affected animals).

INPUT DATA:

     parasitosis - PA$

     species, category(ies) - SP$,CA$

     place, time - PL$,TI$

     specimen, test type - SA$,TY$

     number of subpopulations (groups) - N

FOR I=1 TO N

     List of data: subpopulation name,   number of tested, positive animals, average of parasites :

        I:    NA$(I),   IN(I),PO(I),AV(I)

T = sum of (AV(I)*PO(I))

IN = sum of IN(I)

PO = sum of PO(I)

RESULT:

Subpopu-       Number of    Number of    EXTEN-    INTENSITY    Total              Proportion

 lation              Tested           Animals        SITY         Average           Number of    of Total

                         Animals         with               Propor-     of                      Parasites       Number of

                                                 Parasites      tion            Parasites                                Parasites

 NA$(I)              IN(I)               PO(I)        PO(I)/IN(I)     AV(I)           AV(I)*PO(I)   (AV(I)*PO(I))/T

 T O T A L        IN                   PO               PO/IN           T/PO                     T              1.0000

 

 

 

  8-SELECTED SAMPLING METHODS FOR POPULATION HEALTH INVESTIGATIONS

 

       1-Random numbers for selection of representative animals/herds

       2-Sample size for detecting presence of a disease in a population

       3-Sample size for estimating prevalence in large population

       4-Sample size for estimating prevalence using confidence interval

       5-Sample size for estimating prevalence using absolute difference

       6-Sample size for estimating prevalence in finite population

       7-Sample size for detecting difference between two prevalences

       8-Sample size for estimating mean of population health phenomena - I.

       9-Sample size for estimating mean of population health phenomena - II.

       10-Sample size for detecting difference between two means

       11-Stratified sampling for population health investigations

       12-Estimating prevalence from simple and cluster random samples

       13-Probability of failure to detect diseased animals

 

Note: These sampling methods do not consider the sensitivity of the tests. Its

value lower than 1 requires higher number of at random selected sampling units.

 

8.1-RANDOM NUMBERS FOR SELECTION OF REPRESENTATIVE ANIMALS/HERDS

 This subprogramme calculates random numbers for selection of:   1) representative animals for health/disease investigations

INPUT DATA:

     species, category(ies) - SP$,CA$

     number of animals to be selected  using random numbers       - N

     range of random numbers (1-?)                        - R

RESULT: (used a special RND command for generating random numbers)

(FOR X=1 TO N)

            Random numbers of animals:       (RND(1)*R)+1

 

8.1-RANDOM NUMBERS FOR SELECTION OF REPRESENTATIVE ANIMALS/HERDS

 This subprogramme calculates random numbers for selection of:   2) representative groups of animals and other units for cluster sampling  (samples of herds = cluster samples of animals, samples of areas =  cluster samples of herds/farms, etc.)

INPUT DATA:

     groups of units for cluster sampling             - H$

     sampling element measure units                   - E$

     number of sampling units to be selected  using random numbers  - N

     range of random numbers (1-?)                    - R

RESULT: (used a special RND command for generating random numbers)

(FOR X=1 TO N)

            Random numbers of  E$:       (RND(1)*R)+1

 

8.1-RANDOM NUMBERS FOR SELECTION OF REPRESENTATIVE ANIMALS/HERDS

 This subprogramme calculates random numbers for selection of:   3) representative units (areas, villages, ranches, farms or herds/flocks,  animals) for multistage sampling

INPUT DATA:

     how many stages for multistage sampling    - ST

FOR I=1 TO ST

 I.  stage sampling units                                   - STU$(I)

           how many random numbers, range (1-?)             - N(I),R(I)

RESULT: (used a special RND command for generating random numbers)

(FOR X=1 TO N(I))

     I      S T A G E:  STU$(I)

                      Random numbers:        (RND(1)*R(I))+1

 

8.2-SAMPLE SIZE FOR DETECTING THE PRESENCE OF A DISEASE IN A POPULATION                                                                       (Ref.: Cannon,Roe)

INPUT DATA: (prevalence rate as a proportion, i.e. a number between >0 and <1 !)

Do you know total number of animals of the population, yes(y) or no(n) ? y

     total number of animals of the population                     - N

     what is your best estimate of the prevalence rate  of diseased animals in the given population  - P

     how certain must you be that at least one case of the given   disease is detected - confidence level (0.9, 0.95, 0.99,etc.) - A

RESULT:

D=N*P

Z=1/D

X=(1-(1-A)^Z)

Y=N-(D/2)

T=X*Y+1

  Minimal sample size (number of representative animals selected randomly)  required for detecting the presence of a given disease  =  T

 

8.2-SAMPLE SIZE FOR DETECTING THE PRESENCE OF A DISEASE IN A POPULATION                                                                      (Ref.: Cannon,Roe)

INPUT DATA: (prevalence rate as a proportion, i.e. a number between >0 and <1 !)

Do you know total number of animals of the population, yes(y) or no(n) ? n

     what is your best estimate of the prevalence rate of diseased animals in the given population  - P

     how certain must you be that at least one case of the given  disease is detected - confidence level (0.9, 0.95, 0.99,etc.) - A

RESULT:

   T=LOG(1-A)/LOG(1-P)

  Minimal sample size (number of representative animals selected randomly)  required for detecting the presence of a given disease  =  T

 

8.3-SAMPLE SIZE FOR ESTIMATING DISEASE PREVALENCE IN LARGE POPULATIONS                                                                 (Ref.: Jenicek,Cleroux)

  (binomial distribution - using standard error of estimated prevalence rate)

INPUT DATA:  (prevalence rate as a proportion, i.e. a number between >0 and <1 !):

   have you(y) or not(n) any a priori idea about the prevalence rate ? y

   what is your best estimate of the prevalence rate                 - P

   upper limit of standard error of estimated prevalence rate (maximum difference between the true prevalence rate and your sample prevalence rate that you can tolerate)  - D

RESULT:

   Minimal sample size (number of representative animals selected randomly)  required for estimating disease prevalence rate =  ((P*(1-P))/(D^2)

 

8.3-SAMPLE SIZE FOR ESTIMATING DISEASE PREVALENCE IN LARGE POPULATIONS                                                                 (Ref.: Jenicek,Cleroux)

  (binomial distribution - using standard error of estimated prevalence rate)

INPUT DATA:  (prevalence rate as a proportion, i.e. a number between >0 and <1 !):

   have you(y) or not(n) any a priori idea about the prevalence rate ? n

   upper limit of standard error of estimated prevalence rate  (maximum difference between the true prevalence rate and your sample prevalence rate that you can tolerate)  - D

RESULT:

   Minimal sample size (number of representative animals selected randomly)  required for estimating disease prevalence rate =  (1/(4*D^2)

 

8.4-SAMPLE SIZE FOR ESTIMATING DISEASE PREVALENCE USING CONFIDENCE INTERVAL                                                    (Ref.: Jenicek,Cleroux)

   (binomial distribution in an infinite population)

INPUT DATA:  (prevalence rate as a proportion, i.e. a number between >0 and <1 !):

   have you(y) or not(n) any a priori idea about the prevalence rate   ? y

   enter your best estimate of the prevalence rate (supposed proportion of diseased animals in the given population) ! - P

   value of confidence interval for prevalence rate (proportion)        - L

   critical value of the confidence coefficient (1.65 for 10% of error probability; 1.96 for 5%; 2.58 for 1%; etc.)  - Y

RESULT:

     Minimal sample size required  for estimating disease prevalence rate = ((4*(Y^2)*P*(1-P))/(L^2)

 

8.4-SAMPLE SIZE FOR ESTIMATING DISEASE PREVALENCE USING CONFIDENCE INTERVAL                                                  (Ref.: Jenicek,Cleroux)

   (binomial distribution in an infinite population)     

INPUT DATA:  (prevalence rate as a proportion, i.e. a number between >0 and <1 !):

   have you(y) or not(n) any a priori idea about the prevalence rate   ? n

   value of confidence interval for prevalence rate (proportion)        - L

   critical value of the confidence coefficient  (1.65 for 10% of error probability; 1.96 for 5%; 2.58 for 1%; etc.)  - Y

RESULT:

     Minimal sample size required  for estimating disease prevalence rate = (Y^2)/(L^2)

 

8.5-SAMPLE SIZE FOR ESTIMATING DISEASE PREVALENCE USING ABSOLUTE DIFFERENCE                                                   (Ref.: Jenicek,Cleroux)

  between estimated and true prevalence rate (binomial distribution)

INPUT DATA:  (prevalence rate as a proportion, i.e. a number between >0 and <1 !):

   have you(y) or not(n) a priori idea about the prevalence rate      ? y

   enter your best estimate of the prevalence rate  (supposed proportion of diseased animals in the given population) !  - P

   tolerated difference between true and sample prevalence rates  (level of precision required - tolerated error)   - C

   how certain must you be that the difference between the true  and sample prevalence rate is < C    i.e what is the critical value of the confidence coefficient

                                                                                                                                                              (1.65 for 10% error probability; 1.96 for 5%; 2.58 for 1%; etc.)     - Y

RESULT:

     Minimal sample size required  for estimating disease prevalence rate =  ((Y^2)*P*(1-P))/(C^2)

 

8.5-SAMPLE SIZE FOR ESTIMATING DISEASE PREVALENCE USING ABSOLUTE DIFFERENCE                                                   (Ref.: Jenicek,Cleroux)

  between estimated and true prevalence rate (binomial distribution)

INPUT DATA:  (prevalence rate as a proportion, i.e. a number between >0 and <1 !):

   have you(y) or not(n) a priori idea about the prevalence rate      ? n

   tolerated difference between true and sample prevalence rates  (level of precision required - tolerated error)   - C

   how certain must you be that the difference between the true  and sample prevalence rate is < C   i.e what is the critical value of the confidence coefficient

                                                                                                                                                             (1.65 for 10% error probability; 1.96 for 5%; 2.58 for 1%; etc.)     - Y

RESULT:

     Minimal sample size required  for estimating disease prevalence rate =  (Y^2)/(4*(C^2))

 

8.6-SAMPLE SIZE FOR ESTIMATING DISEASE PREVALENCE IN FINITE POPULATION                                                                   (Ref.: Cannon,Roe)

(binomial distribution)                                 

INPUT DATA: (prevalence rate as a proportion, i.e. a number between >0 and <1 !):

   total number of animals of a given population                      - N

   have you(y) or not(n) any a priori idea about the prevalence rate ? y

   estimated prevalence rate                                          - P

   critical  value of the confidence coefficient  (1.65 for 10% error probability; 1.96 for 5%; 2.58 for 1%; etc.)   - Y

   tolerated difference between estimated and true prevalence rates  (level of precision required - tolerated error) - C

RESULT:

A=((Y^2)*P*(1-P))/(C^2)

B=1/A+1/N

E=(Y^2)/(4*(C^2))

D=1/E+1/N

     Minimal sample size required   for estimating disease prevalence rate =  (1/B)+1

 

8.6-SAMPLE SIZE FOR ESTIMATING DISEASE PREVALENCE IN FINITE POPULATION                                                                  (Ref.: Cannon,Roe)

(binomial distribution)                                 

INPUT DATA: (prevalence rate as a proportion, i.e. a number between >0 and <1 !):

   total number of animals of a given population                      - N

   have you(y) or not(n) any a priori idea about the prevalence rate ? n

   critical  value of the confidence coefficient  (1.65 for 10% error probability; 1.96 for 5%; 2.58 for 1%; etc.)   - Y

   tolerated difference between estimated and true prevalence rates  (level of precision required - tolerated error) - C

RESULT:

E=(Y^2)/(4*(C^2))

D=1/E+1/N

     Minimal sample size required  for estimating disease prevalence rate =  (1/D)+1

 

8.7-SAMPLE SIZE FOR DETECTING DIFFERENCE BETWEEN TWO PREVALENCE RATES                                                                (Ref.: Putt et al.)

(in large populations)                                

INPUT DATA:  (prevalence rate as a proportion, i.e. a number between >0 and <1 !):

   estimated disease prevalence rate of the first population      - P1

   estimated disease prevalence rate of the second population     - P2

   critical value corresponding to statistical significance level  required ('two-sided' hypothesis: 1.65 for 10% of error probability; 1.96 for 5%; 2.58 for 1%; etc.)       - C1

   critical value corresponding to the chance we are willing  to accept of failing to detect a difference of this type   ('one-sided' hypothesis: 1.28 for 10% of error probability;

                                                                                                                                                                                                                                    1.64 for 5%; 2.33 for 1%; etc.)     - C2

RESULT:

P=(P1+P2)/2

A=2*P*(1-P)

B=P1*(1-P1)+P2*(1-P2)

C=(P2-P1)^2

D=C1*SQR(A)

E=C2*SQR(B)

T=((D+E)^2)/C

    For detecting the difference between two disease prevalence rates  minimal sample size of each population  =   T  animals

                                                                                                                                                                    i.e. total sample  =   T*2  animals

 

8.8-SAMPLE SIZE FOR ESTIMATING MEAN OF EPI. PHENOMENA – I                                                                  ´                               (Ref.: Yamane Taro)

This subprogramme calculates sample size in large (infinite) population using:   1) standard deviation of the distribution in population, sampling error  and critical value of confidence coefficient

  INPUT DATA:

   estimated standard (average) deviation of the population mean     - B

   required precision - tolerated sampling error -  deviation of the sample mean in  a b s o l u t e  term    - D

   reliability - critical value of confidence coefficient  (1.65 for 90% confidence level; 1.96 for 95%; 2.58 for 99%; etc.) - Z

RESULT:

T=((Z*B)^2/D^2)

   Minimal sample size required  for estimating population mean  =  T

 

8.8-SAMPLE SIZE FOR ESTIMATING MEAN OF EPI. PHENOMENA – I                                                                                                 (Ref.: Yamane Taro)

 This subprogramme calculates sample size in large (infinite) population using:   2) coefficient of variation (dispersion), tolerated deviation of sample  mean and critical value of confidence coefficient

 INPUT DATA:

   coefficient of variation                                          - C

   allowable deviation of sample mean (in terms of p r o p o r t i o n  of average)    - D

   reliability - critical value of confidence coefficient  (1.65 for 90% confidence level; 1.96 for 95%; 2.58 for 99%; etc.) - Z

RESULT:

T=(Z*C)^2/D^2

   Minimal sample size required  for estimating population mean  =  T

 

8.9-SAMPLE SIZE FOR ESTIMATING MEAN OF EPI. PHENOMENA – II                                                                                                (Ref.: Yamane Taro)

This subprogramme calculates sample size using absolute difference between sample and true mean, confidence coefficient and sample standard deviation  1) when population size is known

INPUT DATA:

    total number of animals of the given population                 - N

    maximal tolerated absolute difference between   the sample mean and the true mean    - C

    maximum tolerated sample  standard deviation                    - B

    critical value of confidence coefficient (1.65 for 10% of error  probability; 1.96 for 5%; 2.58 for 1%;etc.) - Y

RESULT:

T=(N*Y^2*B^2)/(N*C^2+Y^2*B^2)

    Minimal sample size required for estimating the population mean = T

 

8.9-SAMPLE SIZE FOR ESTIMATING MEAN OF EPI. PHENOMENA – II                                                                                               (Ref.: Yamane Taro)

This subprogramme calculates sample size using absolute difference between sample and true mean, confidence coefficient and sample standard deviation   2) when population size is unknown

 INPUT DATA:

    maximal tolerated absolute difference between  the sample mean and the true mean    - C

    maximum tolerated sample  standard deviation                    - B

    critical value of confidence coefficient (1.65 for 10% of error  probability; 1.96 for 5%; 2.58 for 1%;etc.) - Y

RESULT:

T=((Y^2)*(B^2))/C^2

    Minimal sample size required for estimating the population mean = T

 

8.10-SAMPLE SIZE FOR DETECTING DIFFERENCE BETWEEN TWO MEANS                                                                             (Ref.: Kubankova, Hendl)

This subprogramme calculates sample size for detecting difference between two means (if the size and variance of both populations are the same):  1) between two independent samples (populations)

 INPUT DATA:

  means difference - precision in relative term (>0 - <1 !)        - D

  critical value corresponding to statistical significance  level required:  ('one-sided' hypothesis: 1.28 for 10% of error probability; 1.64 for 5%; 2.33 for 1%; etc.)     or  ('two-sided' hypothesis: 1.65 for 10% of error probability;  1.96 for 5%; 2.58 for 1%; etc.)                               - U1

  critical value corresponding to the chance we are willing  to accept of failing to detect a difference of this type ('one-sided' hypothesis: 1.28 for 10% of error probability;     1.64 for 5%; 2.33 for 1%; etc.)     or  ('two-sided' hypothesis: 1.65 for 10% of error probability; 1.96 for 5%; 2.58 for 1%; etc.)                               - U2

  population variance (square of standard deviation)               - SIG

RESULT:

A=(U1+U2)^2

B=SIG/D^2

   For detecting the difference between two populations means  minimal sample size of each population =  2*A*B)  animals

                                                                                                                                                   i.e. total sample size =  2*2*A*B  animals

 

8.10-SAMPLE SIZE FOR DETECTING DIFFERENCE BETWEEN TWO MEANS                                                                            (Ref.: Kubankova, Hendl)

 This subprogramme calculates sample size for detecting difference between two means (if the size and variance of both populations are the same):  2) between two dependent samples (populations)

INPUT DATA:

  means difference - precision in relative term (>0 - <1 !)        - D

  critical value corresponding to statistical significance  level required:  ('one-sided' hypothesis: 1.28 for 10% of error probability;  1.64 for 5%; 2.33 for 1%; etc.)   or   ('two-sided'            hypothesis: 1.65 for 10% of error probability; 1.96 for 5%; 2.58 for 1%; etc.)                               - U1

  critical value corresponding to the chance we are willing to accept of failing to detect a difference of this type  ('one-sided' hypothesis: 1.28 for 10% of error probability;  1.64 for 5%; 2.33 for 1%; etc.)     or    ('two-sided' hypothesis: 1.65 for 10% of error probability;  1.96 for 5%; 2.58 for 1%; etc.)                               - U2

  population variance (square of standard deviation)               - SIG

RESULT:

A=(U1+U2)^2

B=SIG/D^2

For detecting the difference between two populations means  minimal sample size of each population =  A*B  animals

                                                                                                                                               i.e. total sample size =  2*A*B  animals

 

8.11-STRATIFIED SAMPLING FOR POPULATION HEALTH INVESTIGATIONS

INPUT DATA:

     investigation - INV$

     place, time - PL$,TI$

Do you know sample size in absolute  n u m b e r  of representative animals (a) or sample size  p e r c e n t a g e  of a given population (p) ? a

     sample size - number of animals (to be selected randomly)  representing a given population   - N

     number of subpopulations (strata)               - S

FOR I=1 TO S

          List of data:             I:     subpopulation, number of animals - Y$(I),   X(I)

X = sum of X(I)

RESULT:

     Subpopulation       Number   of   animals    Proportion  Percentage

       (stratum)               ----------------------------

                                       total            sampled

 I    Y$(I)                         X(I)           (N*X(I)/X      X(I)/X      (X(I)/X)*100

      T o t a l                     X                    N               1.0000          100.0000

 

8.11-STRATIFIED SAMPLING FOR POPULATION HEALTH INVESTIGATIONS

INPUT DATA:

     investigation - INV$

     place, time - PL$,TI$

Do you know sample size in absolute  n u m b e r  of representative animals (a) or sample size  p e r c e n t a g e  of a given population (p) ? p

     percentage of representative animals to be investigated        - PE

     sample size - number of animals (to be selected randomly)  representing a given population   - N

     number of subpopulations (strata)               - S

FOR I=1 TO S

          List of data:             I:     subpopulation, number of animals - Y$(I),   X(I)

X = sum of X(I)

RESULT:

     Subpopulation       Number   of   animals           Proportion   Percentage

       (stratum)                ------------------------------

                                         total         sampled

 I    Y$(I)                           X(I)     ((X(I)*PE)/100          X(I)/X      (X(I)/X)*100

      T o t a l                        X           X*PE/100               1.0000        100.0000

 

8.12-ESTIMATING DISEASE PREVALENCE FROM SIMPLE AND CLUSTER RANDOM SAMPLES                                                 (Ref.: Putt et al.)

This subprogramme calculates the prevalence estimation from:   1) simple random sample 

INPUT DATA:

     disease/form - D$

     species, category(ies) - S$,C$

     type of prevalence - TP$

     place, time - P$,T$

     random sample size - number  of selected animals                - NM

     sampling fraction in form of a proportion (number between >0 and <1 !)  of selected animals  from the total population - F

     number of diseased animals in the sample                        - E

RESULT:

P=E/NM

A=(1-F)*P*(1-P)/NM

ES=SQR(A)

     Prevalence of diseased animals in the sample  =  P    =  P*100 %

     Standard error of the sample prevalence       =  ES   =  ES*100 %

     Estimated true prevalence in total population  at:

B=(P-1.64*ES)*100

C=(P+1.64*ES)*100

     90% confidence interval lies between   B %  and C %

D=(P-1.96*ES)*100

G=(P+1.96*ES)*100

     95% confidence interval lies between   D %  and G %

H=(P-2.58*ES)*100

I=(P+2.58*ES)*100

     99% confidence interval lies between   H %  and I %

     ( The 95 % confidence limit   =  P*100   +- (1.96*ES)*100  %  )

 

8.12-ESTIMATING DISEASE PREVALENCE FROM SIMPLE AND CLUSTER RANDOM SAMPLES                                                    (Ref.: Putt et al.)

This subprogramme calculates the prevalence estimation   2) cluster random sample

INPUT DATA:

     disease - D$

     species, category(ies) - S$,C$

     place, time - P$,T$

     definition of clusters (groups, herds, flocks, farms, etc.) - CL$

     total number of clusters   - T

     number of clusters randomly selected       - M

FOR I=1 TO M

     List of data:     number of animals: total, diseased in cluster  I      H(I),J(I)

E = sum of J(I)                N = sum of H(I)

P=E/N                              R=P^2

F=M/T                            H = sum of H(I)^2

HC = sum of (H(I)*J(I))        J = sum of J(I)^2

Y=R*H                            Z=2*P*HC

W=Y-Z+J                        S=((1-F)*W)/(M*(M-1))

Q=SQR(S)

RESULT:

         Total number of animals in selected clusters      =  N

         Number of diseased animals in selected clusters   =  E

     Prevalence of diseased animals in the sample  =  E/N  =  E/N*100 %

ES=M/N*Q

     Standard error of sample prevalence           =  ES   =  ES*100 %

     Estimated true prevalence in total population at:

B=(E/N-1.64*ES)*100

K=(E/N+1.64*ES)*100

     90 % confidence interval lies between   B %  and  K %

L=(E/N-1.96*ES)*100

O=(E/N+1.96*ES)*100

     95 % confidence interval lies between   L %  and  O %

V=(E/N-2.58*ES)*100

Z=(E/N+2.58*ES)*100

     99 % confidence interval lies between   V %  and  Z %

        ( The 95 % confidence limit  =  E/N*100   +-  (1.96*ES)*100 % )

 

8.13-PROBABILITY OF FAILURE TO DETECT DISEASED ANIMALS                                                                    ( Ref.: Cannon, Roe; adapted by author)

This subprogramme calculates probability of failure to detect diseased animals from an 'i n f i n i t e' population with the specific proportion of positives.

INPUT DATA:

test sensitivity grade (in form of a proportion)       = S

prevalence rate of positives (in form of a proportion) = P

number of samples = N

RESULT:

Probability of failure to detect diseased animals

          a) without considering the test sensitivity = (1-P)^N

          b) after the correction by test sensitivity = ((1-P)^N)/S

IF (((1-P)^)/S)>1 THEN (((1-P)^N/S) = 1.0000

 

 

       9-SELECTED ASPECTS OF ANIMAL POPULATION HEALTH PROGRAMMES

 

         1-Selection of priority diseases for animal health programmes

         2-Simple model of morbidity/nidality changes' prognosis

         3-Planning/prognosis of morbidity reduction (in linear form)

         4-Planning/prognosis of morbidity reduction (in curve form)

         5-Planning/prognosis of animal population specific health recovery

         6-Animal population health/disease mass actions (incl. vaccinations)

         7-'Critical path' method in animal population health planning

         8-Distribution of animal population health programme inputs

         9-Animal population health programme/measures' coverage

         10-Planning/prognosis of reducing of nidality, mortality and losses

         11-Planning/prognosis of expanding specific disease free territory

 

 

9.1-SELECTION OF PRIORITY DISEASES FOR ANIMAL HEALTH PROGRAMMES

Assessment of eligibility according disease importance, solution feasibility and inputs availability in a given territory and period after analyzing all substantial factors influencing the strategy/measures practicability and probability of success of time-bounded programmes.

INPUT DATA:

     place, time - LU$,TI$

     Number of diseases in consideration - N

The scales consist of  g r a d e s   from 0 to 10  (in form of integers only) !

FOR I=1 TO N

disease No.  I  :   name :      N$(I)

  grades of biological, economic, public health, social importance -  B(I),G(I),Z(I),S(I)

  grades of technical (solution) feasibility, inputs availability   - F(I),D(I)

     Values of importance multiplier coefficients are fixed as follows:

              biological    = 2          economic      = 4          public health = 4          social        = 2

              IGB=2                              IGE=4                             IGZ=4                           IGS=2

    Do you can accept these values  or you will use other ones:

              new values of importance multiplier coefficients:

              biological  - IGB        economic  - IGE           public health - IGZ        social  - IGS

RESULT:

Disease(s)        I m p o r t a n c e  Grades        Grades    of      RESULTS

                   -----------------------------------------   ------------------

                   biol.     eco.     public     social         feasi-   input   T O T A L

                                           health                         bility    avai-     points

        --------------------------------------                                  labi-

        Multiplier *IGB   *IGE   *IGZ   *IGS                      lity

 -------------------------------------------------------------------------------------------------

N$(I)                   +B(I)  +G(I)   +Z(I)   +S(I)        *F(I)    *D(I)     RES(I)

FOR I=1 TO N

SU(I)=B(I)*IGB+G(I)*IGE+Z(I)*IGZ+S(I)*IGS

RES(I)=SU(I)*F(I)*D(I)

 

         Disease(s)          Proportion          Percentage

                                 of the total  T  allocated points

         N$(I)                     RES(I)/T           RES(I)/T*100

         T o t a l                 1.0000                100.0000

N o t e:   Local priorities should be complemented by national, event. international, priorities and reverse.

 

9.2-SIMPLE MODEL OF MORBIDITY/NIDALITY CHANGES' PROGNOSIS

 This programme calculates morbidity changes' prognosis based on: 1) supposed absolute numbers of diseased animals (initial, new, extinct)

 INPUT  DATA:

     disease(s) - EN$

     place - LU$                      period - PE$

     species - ES$                  category(ies) - CA$

     number of diseased animals at the beginning   - AI

     number of planned subperiods      - N

     List of data:

FOR I=1 TO N

    I :   subperiod - SU$(I)   supposed new, extinct diseased animals - IN(I),EX(I)

RESULT:

    Supposed  Future Numbers of Specifically Diseased Animals

    ---------------------------------------------------------------------------------

    Subperiod            New            Extinct                    FINAL

IN = sum of IN(I)

EX = sum of EX(I)

 I  SU$(I)                  IN(I)             EX(I)                     AI+IN-EX

 

9.2-SIMPLE MODEL OF MORBIDITY/NIDALITY CHANGES' PROGNOSIS

 This programme calculates morbidity changes' prognosis based on: 2) supposed relative numbers of morbidity rates - initial point prevalence,    incidence, extinction rates (rates as proportions ,i.e. >0 - 1 !)

INPUT DATA:

     disease(s) - EN$

     place - LU$                period - PE$

     species - ES$            category(ies) - CA$

     initial point prevalence rate - AI

     number of planned subperiods      - N

     List of data:

FOR I=1 TO N

    I :   subperiod - SU$(I)     supposed incidence, extinction rates - IN(I),EX(I)

RESULT:

    Supposed   Future   Diseased   Animal   Morbidity   Rates

    -----------------------------------------------------------------------------

    Subperiod           Incidence      Extinction                Final

                                     Rate                Rate                     Prevalence

                                                                                          Rate

IN = sum of IN(I)

EX = sum of EX(I)

 I  SU$(I)                     IN(I)               EX(I)                  (AI+IN-EX)

 

9.3-PLANNING/PROGNOSIS OF MORBIDITY REDUCTION (IN LINEAR FORM)

INPUT DATA:

     disease(s) - EN$

     place, period - LU$,PE$

     species, category(ies) - ES$,CA$

     time measure unit - UT$

     number of diseased animals at the beginning of the programme - IA

     r e d u c e d   number of diseased animals  planned for the end of the programme       - F

     duration of the programme in time measure units              - T

   RESULT:

     Difference between initial and final number of diseased animals  =  IA-F

R=(IA-F)/T

     Average number of diseased to be reduced during one  UT$  =  R  i.e.  average percentage of initial number             =  R/IA*100 %

              average percentage of the difference between  initial and final numbers   =  R/(IA-F)*100 %

Calculation of partial data:

  Do you want the number of diseased animals after a given period (p)  or the time with a given number of diseased animals (a) ? p

     number of time measure units of a given partial period      - P

     Number of diseased animals reduced during the first  P time units =  P*R  i.e. there should be still a rest of circa  (IA-P*R)  diseased animals.

Calculation of partial data:  Do you want the number of diseased animals after a given period (p) or the time with a given number of diseased animals (a) ? a

     partially reduced number of diseased animals                - N

A=((IA-N)/(IA-F))*T

Number of time units for the reduction to  N  diseased animals =  A  i.e. there is still a rest of  T-A  time units for achieving the goal.

 

       ANIMAL  M O R B I D I T Y   R E D U C T I O N  (IN  LINEAR  FORM)

              Initial number of diseased animals:  IA

              End of               Supposed           Percentage

                                        Number of           of Initial

                                        Diseased             Total

                                        Animals               Number

FOR I= 1 TO T

S = sum of R

W=(IA-S)

              I                             W                  (W/IA)*100

 

9.4-PLANNING/PROGNOSIS OF MORBIDITY REDUCTION (IN CURVE FORM)

(decrease of diseased animals number in regular curve form)

INPUT DATA:

     disease(s) - EN$

     species, category(ies) - ES$,CA$

     place - LU$                      period - PE$

     time measure unit - UT$

     number of diseased animals at the beginning of the programme      - MAX

     r e d u c e d  number of diseased animals  planned for the end of the programme      - MIN

     planned  p e r i o d  for objective achievement  (in time measure units)      - MM

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)      - S

A=(MAX-MIN)/2

D=57.2958  - coefficient for conversion of radians in grades

V=2*MM

B=360/V

         Time                 Supposed number of                         Percentage

     End of  UT$        diseased animals                                of Initial

                                                                                                 Value

FOR I=1 TO MM STEP S

         I              (A*SIN((I*B+90)/D)+A+MIN)    (A*SIN((I*B+90)/D)+A+MIN)/MAX)*100

 

9.5-PLANNING/PROGNOSIS OF ANIMAL POPULATION SPECIFIC HEALTH RECOVERY

(increase of healthy animals' number)

     This programme calculates the plans for health recovery - objectives  in terms of numbers of specific disease(s) free animals  1) in a linear form 

INPUT DATA:

     specific health - SE$

     species, category(ies) - ES$,CA$

     place, period, time measure unit - LU$,PE$,UT$

     number of healthy animals  at the beginning of the programme   - MIN

     i n c r e a s e d   number of healthy animals  planned for the end of the programme   - MAX

     planned   p e r i o d   for objective achievement  (in time measure units)   - MM

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

A=(MAX-MIN)/2

D=57.2958      coefficient of conversion of radians in grades

V=2*MM

B=360/V

RESULT:

         Time                 Supposed Number of       Percentage

    End of UT$          Healthy Animals                of Final Number

FOR I=1 TO MM STEP S

U = sum of (MAX-MIN)/(MM/S)

         I                         (MIN+U)                       ((MIN+U)/MAX)*100

 

9.5-PLANNING/PROGNOSIS OF ANIMAL POPULATION SPECIFIC HEALTH RECOVERY

(increase of healthy animals' number)

     This programme calculates the plans for health recovery - objectives  in terms of numbers of specific disease(s) free animals  2) in a curve form

INPUT DATA:

     specific health - SE$

     species, category(ies) - ES$,CA$

     place, period, time measure unit - LU$,PE$,UT$

     number of healthy animals  at the beginning of the programme   - MIN

     i n c r e a s e d   number of healthy animals planned for the end of the programme   - MAX

     planned   p e r i o d   for objective achievement  (in time measure units)   - MM

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

A=(MAX-MIN)/2

D=57.2958      coefficient of conversion of radians in grades

V=2*MM

B=360/V

RESULT:

         Time                 Supposed Number of                               Percentage

    End of UT$          Healthy Animals                                        of Final Number

FOR I=1 TO MM STEP S

         I              (A*SIN((I*B-90)/D)+A+MIN)       ((A*SIN((I*B-90)/D)+A+MIN)/MAX)*100

 

9.6-ANIMAL POPULATION HEALTH/DISEASE MASS ACTIONS (INCL.VACCINATIONS)

     This subprogramme calculates summary tables of: 1) actions according to diseases

INPUT DATA:

     place (territory), period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of animal health actions - LO$

     measure units - MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data:         I:    disease, number of actions - D$(I),L(I)

RESULT:

     Disease                 Number of        Proportion      Percentage

                                   Actions             of total number of actions

 I   D$(I)                        L(I)                      L(I)/T           L(I)/T*100

     T o t a l                    T                         1.0000             100.0000

T = sum of L(I)

 

9.6-ANIMAL POPULATION HEALTH/DISEASE MASS ACTIONS (INCL.VACCINATIONS)

     This subprogramme calculates summary tables of:  2) actions according to species

INPUT DATA:

     disease(s) - DI$

     place (territory), period - PL$,PE$

     type of animal health actions - LO$

     measure units - MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data:         I:    species, number of actions - D$(I),L(I)

RESULT:

     Species                 Number of        Proportion      Percentage

                                   Actions            of total number of actions

 I   D$(I)                        L(I)                     L(I)/T            L(I)/T*100

     T o t a l                    T                       1.0000              100.0000

T = sum of L(I)

 

9.6-ANIMAL POPULATION HEALTH/DISEASE MASS ACTIONS (INCL.VACCINATIONS)

     This subprogramme calculates summary tables of: 3) actions according to space/territory

INPUT DATA:

     disease(s) - DI$

     place (territory), period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of animal health actions - LO$

     measure units - MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data:

         I:    subterritory, number of actions - D$(I),L(I)

RESULT:

     Subterritory            Number of        Proportion      Percentage

                                      Actions            of total number of actions

 I   D$(I)                            L(I)                    L(I)/T           L(I)/T*100

     T o t a l                         T                      1.0000            100.0000

T = sum of L(I)

 

9.6-ANIMAL POPULATION HEALTH/DISEASE MASS ACTIONS (INCL.VACCINATIONS)

     This subprogramme calculates summary tables of:  4) actions according to time series

INPUT DATA:

     disease(s) - DI$

     place (territory), period - PL$,PE$

     species, category(ies) - SP$,CA$

     type of animal health actions - LO$

     measure units - MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data:         I:    subperiod, number of actions - D$(I),L(I)

RESULT:

     Subperiod               Number of        Proportion      Percentage

                                      Actions             of total number of actions

 I   D$(I)                            L(I)                    L(I)/T            L(I)/T*100

     T o t a l                         T                      1.0000               100.0000

T = sum of L(I)

 

9.6-ANIMAL POPULATION HEALTH/DISEASE MASS ACTIONS (INCL.VACCINATIONS)

     This subprogramme calculates summary tables of:   5) actions according to their types

INPUT DATA:

     disease(s) - DI$

     place (territory), period - PL$,PE$

     species, category(ies) - SP$,CA$

     measure units - MU$

     How many data to be processed - N

FOR I=1 TO N

     List of data:         I:    action type, number of actions - D$(I),L(I)

RESULT:

     Action type             Number of        Proportion      Percentage

                                         Actions          of total number of actions

 I   D$(I)                               L(I)                   L(I)/T           L(I)/T*100

     T o t a l                            T                     1.0000             100.0000

T = sum of L(I)

 

9.6-ANIMAL POPULATION HEALTH/DISEASE MASS ACTIONS (INCL.VACCINATIONS)

     This subprogramme calculates summary tables of:  relative indicators' values related to  6) mass vaccinations

INPUT DATA:

     type of specific vaccination - AP$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     number of animals of the given population          - A

     number of specifically diseased animals            - B

     number of animals in specific foci                 - C

     number of animals in threatened zones              - D

     number of vaccinated animals                       - E

     number of vaccinations in the given period         - F

     grade of vaccine immunization effect (>0 - 1)      - VV

RESULT:

     Proportion of vaccinated animals in the given population    =  E/A   i.e. in percentage    =  E/A*100

     Ratio of vaccinated/diseased animals                     =  E/B

     Ratio of vaccinated/intrafocal animals                   =  E/C

     Ratio of vaccinated/threatened zones animals             =  E/D

     Ratio of vaccinated/intrafocal+threat. zones animals     =  E/(C+D)

     Grade of vaccination repetitions in the given period        =  F/E

     Grade of supposed population postvaccination immunity       =  E/A*VV

 

  Do you want to estimate the grade of population immunity after certain time  in relation to regular population replacement, yes(y) or no(n) ? y

INPUT DATA:

     number of vaccinated animals at the beginning  of the evaluated period      - AEP

     regular continuing replacement period in days              - RRP

     period between the initial and evaluation moments in days  (must be shorter than the regular replacement period !) – PEV

R=AEP*(1-(PEV/RRP))

RESULT:

  At the moment of evaluation about  R  animals still remain  from the initial number of  AEP  vaccinated animals.  If we take into consideration  VV grade of supposed postvaccination  immunity, then we could estimate  R*VV  specifically immune animals   representing about (R*VV)/AEP)*100 %  of initially vaccinated animals.

 

9.6-ANIMAL POPULATION HEALTH/DISEASE MASS ACTIONS (INCL.VACCINATIONS)

     This subprogramme calculates summary tables of:  relative indicators' values related to 7) mass treatments

INPUT DATA:

     specific animal health actions - AP$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     number of animals of the given population         - A

     number of specifically diseased animal s          - B

     number of animals in specific foci                - C

     number of animals in threatened zones             - D

     number of treated animals                         - E

     number of treatment actions in a given period     - F

RESULT:

     Proportion of treated animals                             =  E/A  i.e. in percentage                     =  E/A*100

     Ratio of treated/diseased animals                         =  E/B

     Ratio of treated/intrafocal animals                       =  E/C

     Ratio of treated/threatened zones animals                 =  E/D

     Ratio of treated/intrafocal+threat. zones animals         =  E/(C+D)

     Grade of treatment repetitions during the given period    =  F/E

 

9.7-'CRITICAL PATH' METHOD IN ANIMAL POPULATION HEALTH PLANNING                                                                (Ref.: Lon Poole - adapted by author)

INPUT DATA:

     programme - PR$

     place - LU$                period - PE$

     time measure units - UT$

     monetary units - UM$

     how many activities  does the network (or planning table) contain - N

FOR I=1 TO N

Key data in following order for each activity:  initial node number, end node number (must be major than initial   node number !), duration (in time units), cost

         activity No  I:      A(I,1),A(I,2),E(I,1),E(I,2)

S(A(I,2))>=S(A(I,1))+E(I,1)

F(A(N,2))=S(A(N,2))

IF F(A(I,1))=0 THEN F(A(I,1))=F(A(I,2))-E(I,1)

IF F(A(I,1))>F(A(I,2))-E(I,1) THEN F(A(I,1))=F(A(I,2))-E(I,1)

 

     'CRITICAL PATH' METHOD IN ANIMAL POPULATION HEALTH PLANNING

Activi-     N   o   d   e      T i m e    u n i t                 Duration                            Path                       Costs

ty             Initial  End       Start          End                     UT$                                                               UM$

FOR I=1 TO N

 I             A(I,1)  A(I,2)    S(A(I,1))  F(A(I,2))             E(I,1)          S1=F(A(I,2))-S(A(I,1))-E(I,1)    E(I,2)

S1=0    critical

S1>0    with time reserve

L = sum of E(I,1)

C1 = sum of E(I,2)

          Duration of critical path  =  L UT$

          Total costs                =  C1 UM$

 

9.8-DISTRIBUTION OF ANIMAL POPULATION HEALTH PROGRAMME INPUTS

INPUT DATA:

     programme - PR$

     place, time - LU$,TI$

     input type, input measure units - IN$,MU$

     criterion for input distribution - CID$

     total quantity of the input units for distribution - S2

     number of parts among which the input to be divided - N

FOR I=1 TO N

  List of data :     part I:     name, number of animals     NA$(I),W(I)

S1 = sum of W(I)

R=((S2*W(I)/S1)*10^(R1)/10^(R1)

S3 = sum of R

S4=S2-S3

P=((10000*W(I)/S1)/100)

P1 = sum of P

RESULT:

                                                       D i s t r i b u t i o n   shares

     Part                   Number of     Percentage    Absolute value

                               animals            of total          in input units

FOR I=1 TO N-1

 I   NA$(I)                 W(I)                 P                      R

 N   NA$(N)             W(N)            100-P1                S4

     T o t a l                  S1               100.00                 S2

 

9.9-ANIMAL POPULATION HEALTH PROGRAMME/MEASURES' COVERAGE

     This subprogramme calculates the programme/measures' coverage  (control, investigation, vaccination, treatment, etc.) of:  1) animal population  

INPUT DATA:

     programme - PR$

     epi. risk (disease) - ER$

     epi. measures - ME$

     species, category(ies) - SP$,CA$

     place, time - LU$,TI$

     total number of animals                                 - A

     number of animals at epi. risk                          - AR

     number of animals under epi. measures                   - E

     number of animals in specific disease foci              - J

     number of treated animals                               - B

     number of diseased animals                              - C

     number of treated diseased animals                      - D

RESULT:

        Proportion of animals at epi. risk                    =   AR/A

        Proportion of animals under epi. measures             =   E/A

        Ratio of animals at epi. risk / under measures        =   AR/E

        Ratio of animals under epi. measures / at risk        =   E/AR

        Proportion of treated animals                         =   B/A

        Proportion of treated from diseased animals           =   D/C

        Ratio of animals under measures / intrafocal          =   E/J

        Ratio of animals intrafocal / under measures          =   J/E

 

9.9-ANIMAL POPULATION HEALTH PROGRAMME/MEASURES' COVERAGE

     This subprogramme calculates the programme/measures' coverage  (control, investigation, vaccination, treatment, etc.) of:  2) herds/farms

INPUT DATA:

     programme - PR$

     epi. risk (disease) - ER$

     epi. measures - ME$

     species, category(ies) - SP$,CA$

     place, time - LU$,TI$

     total number of herds (farms)                           - H

     number of herds (farms) at epi. risk                    - HR

     number of herds (farms) under epi. measures             - I

RESULT:

        Proportion of herds at epi. risk                    =   HR/H

        Proportion of herds under epi. measures             =   I/H

        Ratio of herds at epi. risk / under measures        =   HR/I

        Ratio of herds under epi. measures / at risk        =   I/HR

 

9.9-ANIMAL POPULATION HEALTH PROGRAMME/MEASURES' COVERAGE

     This subprogramme calculates the programme/measures' coverage  (control, investigation, vaccination, treatment, etc.) of:  3) territory

 INPUT DATA:

     programme - PR$

     epi. risk (disease) - ER$

     epi. measures - ME$

     species, category(ies) - SP$,CA$

     place, time - LU$,TI$

     surface measure units                                   - SMU$

     total evaluated territory (in surface units)            - F

     territory at epi. risk (in surface units)               - FR

     territory under epi. measures (in surface units)        - G

RESULT:

        Proportion of territory at epi. risk            =   FR/F

        Proportion of territory under epi. measures     =   G/F

        Ratio territory at epi. risk / under measures   =   FR/G

        Ratio territory under epi. measures / at risk   =   G/FR

 

9.9-ANIMAL POPULATION HEALTH PROGRAMME/MEASURES' COVERAG

     This subprogramme calculates the programme/measures' coverage  (control, investigation, vaccination, treatment, etc.) of:  4) time

INPUT DATA:

     programme - PR$

     epi. risk (disease) - ER$

     epi. measures - ME$

     species, category(ies) - SP$,CA$

     place, time - LU$,TI$

     total evaluated period (in time units)                  - TP

     duration of epi. measures (in time units)               - EP

RESULT:

        Proportion of time period under epi. measures   =   EP/TP

        Ratio time period with/without epi. measures    =   EP/(TP-EP)

        Ratio time period without/with epi. measures    =   (TP-EP)/EP

 

9.10-PLANNING/PROGNOSIS OF REDUCING NIDALITY, MORTALITY AND LOSSES

This programme calculates plans eventually prognosis for reduction of specific disease nidality (foci number), mortality and other losses due to diseases  1) in  linear form                  

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     Do you want to plan the reduction of the of nidality (f), mortality (m) or losses (l) ? f

     type of nidality (focality)  - TF$

     time measure unit  - UT$

     number of foci  at the beginning of the programme - MAX

     r e d u c e d   number of foci  planned for the end of the programme   - MIN

     planned period for objective achievement (in time units) - MM

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

      PLAN/PROGNOSIS   OF  N I D A L I T Y   R E D U C T I O N

         Time           Supposed Number          Percentage

 End of  UT$            of foci                  of Initial Number

          (start)              MAX                           100.0000

FOR I=1 TO MM STEP S

U = sum of (MAX-MIN)/(MM/S)

    I                           MAX-U             ((MAX-U)/MAX)*100

 

9.10-PLANNING/PROGNOSIS OF REDUCING NIDALITY, MORTALITY AND LOSSES

This programme calculates plans eventually prognosis for reduction of specific disease nidality (foci number), mortality and other losses due to diseases  2) in  curve form

 INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     Do you want to plan the reduction of the of nidality (f),  mortality (m) or losses (l) ? m

     type of mortality  - TM$

     time measure unit  - UT$

     number of deaths  at the beginning of the programme - MAX

     r e d u c e d   number of deaths  planned for the end of the programme   - MIN

     planned period for objective achievement (in time units) - MM

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

     PLAN/PROGNOSIS   OF  M O R T A L I T Y   R E D U C T I O N

         Time                 Supposed Number          Percentage

 End of  UT$                 of deaths                of Initial Number

          (start)                    MAX                           100.0000

FOR I=1 TO MM STEP S

U = sum of (MAX-MIN)/(MM/S)

    I                                  MAX-U              ((MAX-U)/MAX)*100

 

9.10-PLANNING/PROGNOSIS OF REDUCING NIDALITY, MORTALITY AND LOSSES

This programme calculates plans eventually prognosis for reduction of specific disease nidality (foci number), mortality and other losses due to diseases 1) in  linear form                  

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     Do you want to plan the reduction of the of nidality (f), mortality (m) or losses (l) ? l

     type of losses, losses measure units  - TL$,LMU$

     time measure unit  - UT$

     number of losses in  LMU$  at the beginning of the programme - MAX

     r e d u c e d   losses in LMU$  planned for the end of the programme   - MIN

     planned period for objective achievement (in time units) - MM

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

      PLAN/PROGNOSIS   OF  L O S S E S'   R E D U C T I O N

         Time            Supposed Number          Percentage

 End of  UT$              of losses                of Initial Number

 

          (start)                 MAX                         100.0000

FOR I=1 TO MM STEP S

U = sum of (MAX-MIN)/(MM/S)

    I                              MAX-U              ((MAX-U)/MAX)*100

 

9.10-PLANNING/PROGNOSIS OF REDUCING NIDALITY, MORTALITY AND LOSSES

This programme calculates plans eventually prognosis for reduction of specific disease nidality (foci number), mortality and other losses due to diseases  2) in  curve form

     Enter choice number: 2

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     Do you want to plan the reduction of the of nidality (f),  mortality (m) or losses (l) ? f

     type of nidality (focality)  - TF$

     time measure unit  - UT$

     number of foci  at the beginning of the programme - MAX

     r e d u c e d   number of foci  planned for the end of the programme   - MIN

     planned period for objective achievement (in time units) - MM

A=(MAX-MIN)/2                V=2*MM                   B=360/V

D=57.2958    coefficient for conversion of radians in grades

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

      PLAN/PROGNOSIS   OF  N I D A L I T Y   R E D U C T I O N

         Time                       Supposed Number                                         Percentage

 End of  UT$                             of foci                                               of Initial Number

          (start)                               MAX                                                      100.0000

FOR I=1 TO MM STEP S

    I                     ((A*SIN((I*B+90)/D)+A+MIN)   ((A*SIN((I*B+90)/D)+A+MIN)/MAX)*100

 

9.10-PLANNING/PROGNOSIS OF REDUCING NIDALITY, MORTALITY AND LOSSES

This programme calculates plans eventually prognosis for reduction of specific disease nidality (foci number), mortality and other losses due to diseases   2) in  curve form

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     Do you want to plan the reduction of the of nidality (f),  mortality (m) or losses (l) ? m

     type of mortality  - TM$

     time measure unit  - UT$

     number of deaths  at the beginning of the programme - MAX

     r e d u c e d   number of deaths planned for the end of the programme   - MIN

     planned period for objective achievement (in time units) - MM

A=(MAX-MIN)/2                V=2*MM                   B=360/V

D=57.2958    coefficient for conversion of radians in grades

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

      PLAN/PROGNOSIS   OF  M O R T A L I T Y   R E D U C T I O N

         Time                  Supposed Number                                            Percentage

 End of  UT$                     of deaths                                                of Initial Number

         (start)                          MAX                                                         100.0000

FOR I=1 TO MM STEP S

    I                     ((A*SIN((I*B+90)/D)+A+MIN)     ((A*SIN((I*B+90)/D)+A+MIN)/MAX)*100

 

9.10-PLANNING/PROGNOSIS OF REDUCING NIDALITY, MORTALITY AND LOSSES

This programme calculates plans eventually prognosis for reduction of specific disease nidality (foci number), mortality and other losses due to diseases  2) in  curve form

INPUT DATA:

     disease(s) - DI$

     species, category(ies) - ES$,CA$

     place, period - LU$,PE$

     Do you want to plan the reduction of the of nidality (f),  mortality (m) or losses (l) ? l

     type of losses, losses measure units  - TL$,LMU$

     time measure unit  - UT$

     number of losses in  LMU$ at the beginning of the programme - MAX

     r e d u c e d   losses in LMU$  planned for the end of the programme   - MIN

     planned period for objective achievement (in time units) - MM

A=(MAX-MIN)/2                V=2*MM                   B=360/V

D=57.2958    coefficient for conversion of radians in grades

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

      PLAN/PROGNOSIS   OF  L O S S E S'   R E D U C T I O N

         Time                          Supposed Number                                         Percentage

 End of  UT$                             of losses                                             of Initial Number

        (start)                                   MAX                                                       100.0000

FOR I=1 TO MM STEP S

    I                         ((A*SIN((I*B+90)/D)+A+MIN)          ((A*SIN((I*B+90)/D)+A+MIN)/MAX)*100

 

9.11-PLANNING/PROGNOSIS OF EXPANDING SPECIFIC DISEASE FREE TERRITORY

This programme calculates the plans/prognosis for specific disease free territory expanding (in territory surface units, herds, farms, ranches, etc.)  1) in  linear form

INPUT DATA:

     specific health - SE$

     species - ES$

     place, period - LU$,PE$

     Do you want to plan in terms of H$ - territory surface (t), herds (h),  farms (f), ranches (r), districts (d), regions (g) or zones (z)  ? t

     type of territory - TM$

     territory surface measure units - TMU$

     number of disease free H$ at the beginning                   - MIN

     increased number of disease free H$ planned for the end      - MAX

     time measure unit                                            - UT$

     planned period for objective achievement (in time units)     - MM

     average duration of intervals (subperiods)   for partial data calculation (in time measure units)   - S

IF S=0 THEN S=1

         PLAN/PROGNOSIS  OF  EXPANDING  SPECIFIC  DISEASE  FREE  TERRITORY

         Time                  Supposed Number          Percentage

    End of UT$           of Disease Free             of Final Number

                                                H$

       (start)                             MIN                      (MIN/MAX)*100

FOR I=1 TO MM STEP S

U = sum of (MAX-MIN)/(MM/S)

    I                                       MIN+U                ((MIN+U)/MAX)*100

 

9.11-PLANNING/PROGNOSIS OF EXPANDING SPECIFIC DISEASE FREE TERRITORY

This programme calculates the plans/prognosis for specific disease free territory expanding (in territory surface units, herds, farms, ranches, etc.)  1) in  linear form

INPUT DATA:

     specific health - SE$

     species - ES$

     place, period - LU$,PE$

     Do you want to plan in terms of H$ - territory surface (t), herds (h),  farms (f), ranches (r), districts (d), regions (g) or zones (z)  ? h

     type of herds     - TH$

     number of disease free H$ at the beginning                   - MIN

     increased number of disease free H$ planned for the end      - MAX

     time measure unit                                            - UT$

     planned period for objective achievement (in time units)     - MM

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

IF S=0 THEN S=1

         PLAN/PROGNOSIS  OF  EXPANDING  SPECIFIC  DISEASE  FREE  TERRITORY

         Time               Supposed Number            Percentage

    End of UT$           of Disease Free            of Final Number

                                                H$

       (start)                            MIN                    (MIN/MAX)*100

FOR I=1 TO MM STEP S

U = sum of (MAX-MIN)/(MM/S)

    I                                      MIN+U              ((MIN+U)/MAX)*100

 

9.11-PLANNING/PROGNOSIS OF EXPANDING SPECIFIC DISEASE FREE TERRITORY

This programme calculates the plans/prognosis for specific disease free territory expanding (in territory surface units, herds, farms, ranches, etc.)  2) in  curve form

 INPUT DATA:

     specific health - SE$

     species - ES$

     place, period - LU$,PE$

     Do you want to plan in terms of H$ - territory surface (t), herds (h),  farms (f), ranches (r), districts (d), regions (g) or zones (z)  ? f

     type of farms     - TF$

     number of disease free H$ at the beginning                   - MIN

     increased number of disease free H$ planned for the end      - MAX

     time measure unit                                            - UT$

     planned period for objective achievement (in time units)     - MM

A=(MAX-MIN)/2               V=2*MM                     B=360/V

D=57.2958     coefficient of conversion of radians in grades

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

IF S=0 THEN S=1

         PLAN/PROGNOSIS  OF  EXPANDING  SPECIFIC  DISEASE  FREE  TERRITORY

         Time               Supposed Number                               Percentage

    End of UT$          of Disease Free                               of Final Number

                                             H$

         (start)                        MIN                                     (MIN/MAX)*100

FOR I=1 TO MM STEP S

    I               ((A*SIN((I*B-90)/D)+A+MIN)    ((A*SIN((I*B-90)/D)+A+MIN)/MAX)*100

 

9.11-PLANNING/PROGNOSIS OF EXPANDING SPECIFIC DISEASE FREE TERRITORY

This programme calculates the plans/prognosis for specific disease free territory expanding (in territory surface units, herds, farms, ranches, etc.)  2) in  curve form

INPUT DATA:

     specific health - SE$

     species - ES$

     place, period - LU$,PE$

     Do you want to plan in terms of H$ - territory surface (t), herds (h),  farms (f), ranches (r), districts (d), regions (g) or zones (z)  ? d

     type of districts - TR$

     number of disease free H$ at the beginning                   - MIN

     increased number of disease free H$ planned for the end      - MAX

     time measure unit                                            - UT$

     planned period for objective achievement (in time units)     - MM

A=(MAX-MIN)/2               V=2*MM                     B=360/V

D=57.2958     coefficient of conversion of radians in grades

     average duration of intervals (subperiods)  for partial data calculation (in time measure units)   - S

IF S=0 THEN S=1

         PLAN/PROGNOSIS  OF  EXPANDING  SPECIFIC  DISEASE  FREE  TERRITORY

         Time                      Supposed Number                                       Percentage

    End of UT$                of Disease Free                                       of Final Number

                                                  H$

         (start)                             MIN                                                (MIN/MAX)*100

FOR I=1 TO MM STEP S

    I                     ((A*SIN((I*B-90)/D)+A+MIN)   ((A*SIN((I*B-90)/D)+A+MIN)/MAX)*100

 

 

 

       10-COST AND EFFICIENCY OF ANIMAL POPULATION HEALTH PROGRAMMES

        

         1-Simple indicators of economic benefit/cost analysis

         2-Simple absolute economic benefit of animal health programme

         3-Biological cost/effectiveness of animal health programme

         4-Public health cost/effectiveness of animal health programme

         5-Production cost/effectiveness of animal health programme

         6-Effectiveness of prophylactic measures and recovery rates

         7-Final situation in populations with and without programme

         8-Consumption and cost of vaccines, drugs and other substances

         9-Programme benefit/cost ratio in discounted monetary values

         10-Programme benefit/cost ratio in cumulative monetary values

         11-Economic effect after specific animal disease eradication

         12-Public health effect of specific zoonosis eradication

         13-Biological effect of specific animal disease eradication

         14-Implementation of animal population health programme

 

 

10.1-SIMPLE INDICATORS OF ECONOMIC BENEFIT/COST ANALYSIS  OF ANIMAL POPULATION HEALTH PROGRAMME

INPUT DATA:

     programme - PE$

     place, period - LU$,TI$

     monetary units - MO$

     number of data in pairs - N

FOR I=1 TO N

    List of data:  I:    part name, total cost, total benefit - NA$(I),A#(I),B#(I)

B# = sum of B#(I)

A# = sum of A#(I)

RESULT:

Total cost: A#                         Total benefit: B#

     Simple absolute efficiency (benefit)           =  B#-A#  MO$

     Benefit/cost ratio (relative efficiency)        =  B#/A#    =  1 :  A#/B#

     Cost/benefit ratio                                           =  A#/B#   =  1 :  B#/A#

 

10.2-SIMPLE ABSOLUTE ECONOMIC BENEFIT OF ANIMAL HEALTH PROGRAMME

Applicable only when the situation has been improved.

INPUT DATA:

     programme - PE$

     place, period - LU$,TI$

     number of subperiods - N

     indicator - IN$

     measure units - UM$

     The calculation, is it based on health benefit (positive) data (p)   or on losses (negative) data (n) ? p

     values of benefit of population health in pair :

                                         initial (m i n o r) - C

                                         final (m a j o r)   - D

        E C O N O M I C   B E N E F I T  OF ANIMAL HEALTH PROGRAMME

     Health increase benefit  due to the programme  =  D-C  UM$   i.e. average per subperiod =  (D-C)/N  UM$

        Values:

                   Initial: C UM$                Final: D UM$

 

                    Subperiod            Supposed           Percentage

                                                     Value                of Maximum

                                                     UM$                    Value

                      (start)                       C                    (C/D)*100

FOR I=1 TO N

S = sum of (D-C)/N

                I                              (D-(D-S)+C       ((D-(D-S))+C)/D*100

 

10.2-SIMPLE ABSOLUTE ECONOMIC BENEFIT OF ANIMAL HEALTH PROGRAMME

Applicable only when the situation has been improved.

INPUT DATA:

     programme - PE$

     place, period - LU$,TI$

     number of subperiods - N

     indicator - IN$

     measure units - UM$

     The calculation, is it based on health benefit (positive) data (p)  or on losses (negative) data (n) ? n

     values of losses caused by morbidity in pair :

                                         initial (m a j o r) - D

                                         final (m i n o r)   - C

RESULT:

     Disease losses reduction benefit   due to the programme  =  D-C UM$   i.e. average per subperiod  =   (D-C)/N UM$

               Subperiod            Supposed           Percentage

                                               Value                of Maximum

                                                UM$                    Value

              (start)                          C                     (C/D)*100

FOR I=1 TO N

S = sum of (D-C)/N

                I                        (D-(D-S)+C       ((D-(D-S))+C)/D*100

 

10.3-BIOLOGICAL COST/EFFECTIVENESS OF ANIMAL HEALTH PROGRAMME

Desirable changes in: animal population size/structure, health, morbidity, mortality, nidality, vectors/reservoirs occurrence, other disease sources, etiological agents and their transmission, ecological conditions, etc. Applicable only when the situation has been improved.

INPUT DATA:

     programme - EP$

     place, period - A$,B$

     biological phenomenon - F$

     biological phenomenon measure units - U$

     input (cost) measure units          - M$

     total cost (input) of the programme - C

     Is the biological phenomenon desirable - positive (p),  i.e. with  m a j o r (!!) final value  or     not desirable - negative (n),  i.e. with  m i n o r (!!) final value   ? p

     number of biological phenomenon measure units  at the programme beginning   - VI

                                                                                              at the programme end         - VF

RESULT:

D=VF-VI

     Difference between the initial and final values of the biological phenomenon =  D U$

M=C/D

     Change of biological phenomenon total value by every biological unit  costs in average   M  M$

N=D/C

     Theoretically, for every input unit total value  of the biological phenomenon can be changed in average  by  N  U$

 

10.3-BIOLOGICAL COST/EFFECTIVENESS OF ANIMAL HEALTH PROGRAMME

Desirable changes in: animal population size/structure, health, morbidity, mortality, nidality, vectors/reservoirs occurrence, other disease sources, etiological agents and their transmission, ecological conditions, etc.  Applicable only when the situation has been improved.

INPUT DATA:

     programme - EP$

     place, period - A$,B$

     biological phenomenon - F$

     biological phenomenon measure units - U$

     input (cost) measure units          - M$

     total cost (input) of the programme - C

     Is the biological phenomenon desirable - positive (p), i.e. with  m a j o r (!!) final value  or     not desirable - negative (n),  i.e. with  m i n o r (!!) final value      ? n

     number of biological phenomenon measure units

                                 at the programme beginning   - VI

                                 at the programme end         - VF

RESULT:

D=VF-VI

     Difference between the initial and final values of the biological phenomenon =  D U$

M=C/D

     Change of biological phenomenon total value by every biological unit  costs in average   M  M$

N=D/C

     Theoretically, for every input unit total value  of the biological phenomenon can be changed in average  by  N  U$

 

10.4-PUBLIC HEALTH COST/EFFECTIVENESS OF ANIMAL HEALTH PROGRAMME

     Desirable changes in human population in terms: of zoonoses' risk grade, zoonoses' incidence, prevalence, mortality, invalidity, etc.   Applicable only when the situation has been improved.

INPUT DATA:

     programme - EP$

     place, period - A$,B$

     public health phenomenon - F$

     public health phenomenon measure units - U$

     input (cost) units                     - M$

     total input (cost) of the programme    - C

     Is the public health phenomenon desirable - positive (p),  i.e. with  m a j o r  (!!)  final value or   not desirable - negative (n), i.e. with  m i n o r  (!!) final value      ? p

     number of public health phenomenon measure units  at the programme beginning - VI

                                                                                                   at the programme end       - VF

RESULT:

D=VF-VI

     Difference between the initial and final values  of the public health phenomenon = D U$.

M=C/D

     Change of public health phenomenon total value by every public health unit costs in average  M  M$.

N=D/C

     Theoretically, for every input (cost) unit total value  of the public health phenomenon can be changed in average  by  N public health units.

 

10.4-PUBLIC HEALTH COST/EFFECTIVENESS OF ANIMAL HEALTH PROGRAMME

     Desirable changes in human population in terms: of zoonoses' risk grade, zoonoses' incidence, prevalence, mortality, invalidity, etc.  Applicable only when the situation has been improved.

INPUT DATA:

     programme - EP$

     place, period - A$,B$

     public health phenomenon - F$

     public health phenomenon measure units - U$

     input (cost) units                     - M$

     total input (cost) of the programme    - C

     Is the public health phenomenon desirable - positive (p),  i.e. with  m a j o r  (!!)  final value or   not desirable - negative (n),  i.e. with  m i n o r  (!!) final value     ? n

     number of public health phenomenon measure units   at the programme beginning - VI

                                                                                                    at the programme end       - VF

RESULT:

D=VF-VI

     Difference between the initial and final values  of the public health phenomenon = D U$.

M=C/D

     Change of public health phenomenon total value by every public health unit  costs in average  M  M$.

N=D/C

     Theoretically, for every input (cost) unit total value  of the public health phenomenon can be changed in average  by  N public health units.

 

10.5-PRODUCTION COST/EFFECTIVENESS OF ANIMAL HEALTH PROGRAMME

Applicable only when the situation has been improved, i.e. for total value i n c r e a s e  of animal products (live animals, meat, milk, eggs, etc.).

INPUT DATA:

     programme - EP$

     place, period - A$,B$

     animal product               - F$

     animal product measure units - U$

     monetary units               - M$

     total cost of the programme in monetary units    - C#

     quantity of animal product measure units at the programme beginning - VI

                                                                               at the programme end       - VF

     quality as  p r i c e  (adjusted for inflation)  of one animal product measure unit at the programme beginning - QI

                                                                                                                                                at the programme end       - QF

RESULT:

D=VF-VI

     Difference between the initial and final quantity of F$ = D U$

M=C#/D

     Increase of the quantity of  F$ by one U$ costs in average   M  M$

N=D/C#

     For every one M$ input the quantity of F$ increases in average by  N U$

DV=VF*QF-VI*QI

     Difference between the initial and final monetary value of F$ =  DV M$

M=C#/DV

     Increase of the monetary value of F$ by one M$ costs in average  M  M$

N=DV/C#

     For every one M$ input the monetary value of F$ increases in average by N M$

 

10.6-EFFECTIVENESS OF PROPHYLACTIC MEASURES AND RECOVERY RATES

     This subprogramme calculates: 1) effectiveness of prophylactic measures

INPUT DATA:

     prophylactic measures - TT$

     place, time - LU$,TI$

     species, category(ies) - SP$,CA$

     Do you have absolute (a) or relative (r) data              ? a

     number of animals at risk prophylactically treated         - AR

     number of animals at risk prophylactically non-treated     - APN

     number of diseased among prophylactically treated  animals at risk    - TR

     number of diseased among prophylactically non-treated  animals at risk    - NTR

     incidence rate among prophylactically treated animals at specific risk (in %)       - T

     incidence rate among prophylactically  treated animals at direct risk (in %)       - TD

     incidence rate among prophylactically  treated animals at indirect risk (in %)       - TI

     incidence rate among prophylactically  non-treated animals at specific risk (in %)       - NT

     incidence rate among prophylactically  non-treated animals at direct risk (in %)       - NTD

     incidence rate among prophylactically  non-treated animals at indirect risk (in %)       - NTI

RESULT:

     Prophylactic measures effectiveness  among animals at risk           = (NT-T)/NT*100 %

     Prophylactic measures effectiveness  among animals at direct risk           = (NTD-TD)/NTD*100 %

     Prophylactic measures effectiveness  among animals at indirect risk           = (NTI-TI)/NTI*100 %

 

10.6-EFFECTIVENESS OF PROPHYLACTIC MEASURES AND RECOVERY RATES

     This subprogramme calculates: 1) effectiveness of prophylactic measures

INPUT DATA:

     prophylactic measures - TT$

     place, time - LU$,TI$

     species, category(ies) - SP$,CA$

     Do you have absolute (a) or relative (r) data              ? r

     incidence rate among prophylactically treated animals at specific risk (in %)       - T

     incidence rate among prophylactically  treated animals at direct risk (in %)       - TD

     incidence rate among prophylactically  treated animals at indirect risk (in %)       - TI

     incidence rate among prophylactically  non-treated animals at specific risk (in %)       - NT

     incidence rate among prophylactically non-treated animals at direct risk (in %)       - NTD

     incidence rate among prophylactically  non-treated animals at indirect risk (in %)       - NTI

RESULT:

     Prophylactic measures effectiveness  among animals at risk           = (NT-T)/NT*100 %

     Prophylactic measures effectiveness  among animals at direct risk           = (NTD-TD)/NTD*100 %

     Prophylactic measures effectiveness  among animals at indirect risk           = (NTI-TI)/NTI*100 %

 

10.6-EFFECTIVENESS OF PROPHYLACTIC MEASURES AND RECOVERY RATES

     This subprogramme calculates:  2) disease recovery rates in treated and non-treated animals

INPUT DATA:

     recovery measures - RM$

     place, time - LU$,TI$

     species, category(ies) - SP$,CA$

Recovery rates' calculation is applicable when positive difference  between treated and non-treated  animals is expected and all numeric input data (major than >0) are available !

     number of specifically diseased animals              - SDA

     number of specifically diseased animals  under recovery measures (curative treatment)     - RM

     number of all recovered animals from a disease       - RA

     number of treated animals recovered from a disease   - RTA

RESULT:

     Proportion of treated diseased animals               =  RM/SDA

     Recovery rate of all diseased animals                =  RA/SDA

     Recovery rate of treated diseased animals            =  RTA/RM

     Recovery rate of non-treated diseased animals        =  (RA-RTA)/(SDA-RM)

     Ratio of treated/non treated animals' recovery rates =   (RTA/RM)/((RA-RTA)/(SDA-RM))   :  1

 

10.7-COMPARISON OF FINAL SITUATION IN POPULATIONS WITH AND WITHOUT PROGRAMME

Programme of reduction of disease(s) morbidity, mortality or nidality if o t h e r   c o n d i t i o n s   are the  s a m e  ! Applicable only for cases when the programme  i m p r o v e s  the situation in comparison with w o r s e n i n g  situation without programme (due to disease spreading) !

INPUT DATA:

     programme - PR$

     species, category(ies) - E$,CA$

     place, period- L$,T$

     epi. phenomenon (indicator) - EPI$

     phenomenon measure units - U$

     monetary units - M$

     value of average loss by one unit of the phenomenon       - CU

     i n i t i a l  number of epi. phenomenon units  in the compared populations (the  s a m e  in both) - VI

  f i n a l  (reduced) number of epi. phenomenon units in population  w i t h  programme         - VFP

  f i n a l  (increased) number of epi. phenomenon units in population   w i t h o u t  programme   - VFS

     total cost of the programme                               - C

DP=VI-VFP                         DS=VFS-VI

RESULT:

Reduction of EPI$   in population  w i t h  the programme = DP U$  i.e. benefit = (DP*CU) M$, while in the population   w i t h o u t  programme  the epi. situation becomes worse by DS U$  of value of DS*CU M$

  Programme benefit/cost ratio        = DP*CU/C    or   1  :  1/(DP*CU/C)

  Programme cost/benefit ratio        = C/(DP*CU)  or   1  :  1/(C/(DP*CU))

  The reduction of the losses by one phenomenon measure unit costs in average C/DP M$ .

  Theoretically, if this average is applied upon the population (of the same  size and situation) w i t h o u t  programme to reach a similar result  in the future under the same or similar conditions, the late programme  may cost about ((VFS-VFP)*(C/DP))  M$  (not considering inflation),   i.e. ((VFS-VFP)*(C/DP))-C  M$ more.

 

10.8-CONSUMPTION AND COST OF VACCINES, DRUGS AND OTHER SUBSTANCES

     This subprogramme calculates: - consumption and cost according to the coverage (quantity) need of:  1) vaccines or drugs

INPUT DATA:

     purpose (programme) - PU$

     place, time - PL$,TI$

     species, category(ies) - SP$,CA$

     name of substance    - NA$         substance measure units     - U$

     monetary units                                         - MU$

     price of one substance unit                            - SU

     average dosis in substance measure units               - D

     number of individual applications                       - N

RESULT:

    Average dosis price                    =  D*SU MU$

    Total consumption of  NA$   =  N*D               U$

    Total cost                                 =  (N*D)*SU          MU$

 

10.8-CONSUMPTION AND COST OF VACCINES, DRUGS AND OTHER SUBSTANCES

     This subprogramme calculates:  - consumption and cost according to the coverage (quantity) need of:  2) solutions for disinfection or disinfestation

      INPUT DATA:

     purpose (programme) - PU$

     place, time - PL$,TI$

     name of substance    - NA$         substance measure units  - U$

     monetary units                                         - MU$

     price of one substance unit                            - SU

     average substance concentration (%) in the solution    - AC

     surface measure units                                  - SMU$

     average of the solution per one surface unit in liters - AAS

     total surface for the application of the solution      - TSA

RESULT:

NE=AAS*AC/100

TN=NE*TSA

    Consumption of NA$  per one surface unit    =  NE U$

    Total consumption of                   =  TN U$

    Cost per one surface unit              =  NE*SU MU$

    Total cost                             =  TN*SU MU$

 

10.8-CONSUMPTION AND COST OF VACCINES, DRUGS AND OTHER SUBSTANCES

     This subprogramme calculates:  - quantity according to available financial input for:  3) vaccines or drugs

INPUT DATA:

     purpose (programme) - PU$

     place, time - PL$,TI$

     species, category(ies) - SP$,CA$

     name of substance    - NA$                   substance measure units  - U$

     monetary units                                         - MU$

     price of one substance unit                            - SU

     average dosis in substance measure units               - D

     available financial input                               - FI

RESULT:

    Average dosis price                    =  D*SU MU$

               Available financial input is for (FI/(D*SU) doses.

 

10.8-CONSUMPTION AND COST OF VACCINES, DRUGS AND OTHER SUBSTANCES

     This subprogramme calculates: quantity according to available financial input for:   4) disinfection or disinfestation solutions

INPUT DATA:

     purpose (programme) - PU$

     place, time - PL$,TI$

     name of substance    - NA$                        substance measure units  - U$

     monetary units                                         - MU$

     price of one substance unit                            - SU

     average substance concentration (%) in the solution    - AC

     surface measure units                                  - SMU$

     average of the solution per one surface unit in liters - AAS

     available financial input                               - FI

RESULT:

NE=AAS*AC/100

         Available financial input is for (FI/(NE*SU) SMU$.

 

10.9-PROGRAMME BENEFIT/COST RATIO IN DISCOUNTED MONETARY VALUES                                                                   (Ref.: Putt et al.)

 For the phenomena measured in monetary units. Discounted = present value.

INPUT DATA:

     programme - EP$

     place, period  - LU$,TI$

     duration of subperiod (year, month, etc.)          - SP$

     number of subperiods to be evaluated               - N

     monetary units                                     - UM$

     discount rate (in decimal fraction, i.e. >0-<1)    - DE

     Key in pairs monetary values (adjusted for inflation) of benefit, cost:

FOR I=1 TO N

     subperiod  I :    B(I),C(I)

U=1/(1+DE)

BE = sum of B(I)

CO = sum of C(I)

S = sum of B(I)/(1+DE)^I

T = sum of C(I)/(1+DE)^I

RESULT:

SP$       Benefit        Cost        Discount                 D   i   s   c   o   u   n   t   e   d

               UM$          UM$         factor               benefit                cost                        ben.- cost

 

 1             B(1)            C(1)             U              (B(1)/(1+DE))   (C(1)/(1+DE))       ((B(1)/(1+DE))-(C(1)/(1+DE)))

FOR I=2 TO N

 I              B(I)            C(I)      1/((1+DE)^I)  (B(I)/(1+DE)^I)  (C(I)/(1+DE)^I)    ((B(I)/(1+DE)^I))-(C(I)/(1+DE)^I)

                                                   Present

Total        BE              CO          values                    S                          T                                  S-T

 

10.10-PROGRAMME BENEFIT/COST RATIO IN CUMULATIVE MONETARY VALUES

Applicable for the phenomena measurable in monetary units. B e n e f i t of a specific disease eradication  c o n t i n u e s  after the end of the programme and inputs, thanks also to reproduction process, avoiding previous negative consequences during the next periods and generations.

INPUT DATA:

     programme - EP$

     place - LU$

     eradication period - TI$

     post-eradication period - PP$

     duration of subperiod (year, month, etc.)           - SP$

     number of subperiods to be evaluated                - N

     monetary units                                      - UM$

     Key in pairs the values (adjusted for inflation) of benefit, cost:

FOR I=1 TO N

     subperiod   I :    B(I),C(I)

BE = sum of B(I)

CO = sum of C(I)

RESULT:

SP$        Benefit     Cost      Ben/Cost    Cumul.Ben.   Cumul.Cost   Cum.B/C

FOR I=1 TO N

 I               B(I)         C(I)        B(I)/C(I)           BE                 CO              BE/CO

 

  Ratio of total cumulative benefit / total cumulative cost  =  BE/CO   =  1 :  CO/BE

  Ratio of total cumulative cost / total cumulative benefit  =  CO/BE   =  1 :  BE/CO

  Difference between total cumulative benefit  and total cumulative cost          =  BE-CO  UM$

 

10.11-ECONOMIC EFFECT  A F T E R  SPECIFIC ANIMAL DISEASE ERADICATION

This subprogramme calculates economic effect after the eradication of a disease when the inputs stop, while the  b e n e f i t  of disease free status c o n t i n u e s (avoiding the initial losses) during next periods and animal generations (thanks to health reproduction), i.e.  m u l t i p l y i n g  effect. After-eradication saved value = loss value at programme beginning.  (For final evaluation pre-eradication benefit is to be added to the result.)

INPUT DATA:

     programme - EP$

     place - LU$

     period of eradication programme                - PP$

     post-eradication period                        - TI$

     duration of subperiod (year, month, etc.)      - SP$

     monetary units                                 - UM$

     loss due to disease at programme beginning     - LO

     total cost of the programme                    - TC

     number of post-eradication subperiods to be evaluated   - N

     discount rate (>0-<1) of programme  cost       - DR#

 

ECONOMIC EFFECT  A F T E R  SPECIFIC ANIMAL DISEASE ERADICATION

P o s t -           Benefit -          Cumulative            Ratio                  Ratio cumul.

eradication    value saved      benefit -            cumulative              benefit/

                             in              value saved in        benefit/              /discounted

  SP$                  UM$                  UM$                /total cost              total cost

FOR I=1 TO N

   I                        LO                    LO*I                (LO*I)/TC    ((LO*I)/((TC/(1+DR#)^(I)))

 

Do you want to calculate cumulative benefit combining eradication programme period and post-eradication period, yes(y) or no(n) ?  Yes

INPUT:     cumulative benefit value at eradication programme end = CV

 

ECONOMIC EFFECT OF SPECIFIC ANIMAL DISEASE ERADICATION  (including eradication programme and post-eradication periods)

P o s t -         Value saved    Total cumulative             Ratio                           Ratio cumul.

eradication                             value saved from        cumulative                        benefit/

                               in           programme beginning     benefit/                        /discounted

  SP$                    UM$                     UM$                    /total cost                        total cost

FOR I=1 TO N

   I                         LO                  (LO*I)+CV          ((LO*I)+CV)/TC)    (LO*I)+CV)/((TC/(1+DR#)^(I)))

 

10.12-PUBLIC HEALTH EFFECT OF SPECIFIC ZOONOSIS ERADICATION

This subprogramme calculates public health effect of eradication in animal population of a specific infectious disease transmissible to man. 'S a v e d'   p e r s o n s  from the  specific zoonosis =  r e d u c e d   new cases in comparison with initial incidence thanks to reduced risk during the programme and post-eradication zero risk due to continuing specific disease free status.

INPUT DATA:

     programme - EP$

     place - LU$

     period of the programme - PP$

     number of years of the programme                            - YP

     number of post-eradication years to be evaluated (up to 11) - N

FOR I=1 TO YP

     year I :  number of new specifically diseased persons - DP(I)

New cases in human population after eradication programme end:

FOR I=(YP+1) TO (N+YP)

     year I  from programme beginning:  number of diseased persons  DP(I)

 

PUBLIC HEALTH EFFECT  D U R I N G  SPECIFIC ZOONOSIS ERADICATION PROGRAMME

Number of new diseased persons during programme first year: DP(1)

Programme   Number of    Cumulative       Number of       Cumulative        Ratio of

  year               new              number of        of 'saved'            number          new cases/

                     diseased       new diseased      persons          of 'saved'         /initial year

                      persons          persons                                        persons            cases

FOR I=1 TO YP

  I                     DP(I)                  PY              DP(1)-DP(I)             CD              DP(I)/DP(1)

PY = sum of DP(I)

CD = sum of (DP(1)-DP(I))

 

PUBLIC HEALTH EFFECT  A F T E R  SPECIFIC ZOONOSIS ERADICATION PROGRAMME

Number of new diseased persons during programme first year: DP(1)

Year                Number of     Cumul. number    Number of      Cumul. Number       Ratio of

from                     new               of new                   'saved'            of 'saved'            new cases/

programme      diseased      diseased  from        persons               from                /initial year

beginning         persons       programme                                     programme              cases

                                                 beginning                                      beginning

FOR I=(YP+1) TO (N+YP)

 I                           DP(I)            PY+EM               DP(1)-DP(I)         E+CD               DP(I)/DP(1)

E = sum of (DP(1)-DP(I))

EM = sum of DP(I)

 

10.13-BIOLOGICAL EFFECT OF SPECIFIC ANIMAL DISEASE ERADICATION

Number of animals or herds or territory 's a v e d'  from the specific infectious disease = reduced number of new cases in comparison with initial incidence, thanks to reduced risk during the programme and post-eradication zero risk due to  c o n t i n u i n g  specific disease free status.

INPUT DATA:

     programme - EP$

     place - LU$

     period of the programme - PP$

     number of years of the programme                            - YP

     number of post-eradication years to be evaluated            - N

Evaluation in affected animals (a) or herds (h) or territory units (t) ? a

FOR I=1 TO YP

     year I :  number of new animals specifically affected  - DP(I)

New cases after eradication programme end:

FOR I=(YP+1) TO (N+YP)

     year I  from programme beginning: number of affected animals  DP(I)

 

BIOLOGICAL EFFECT  D U R I N G  SPECIFIC ANIMAL DISEASE ERADICATION PROGRAMME

Number of new affected animals during programme first year: DP(1)

Programme     Number of   Cumulative          Number of                Cumulative        Ratio of

  year                    new         number of             of 'saved'                    number          new cases/

                         affected       affected                   animals                   of 'saved'        /initial year

                          animals        animals                      animals                    cases

FOR I=1 TO YP

  I                         DP(I)             PY                       DP(1)-DP(I)                   CD              DP(I)/DP(1)

PY = sum of DP(I)

CD = sum of (DP(1)-DP(I))

 

BIOLOGICAL EFFECT  A F T E R  SPECIFIC ANIMAL DISEASE ERADICATION PROGRAMME

Number of new affected animals during programme first year: DP(1)

Year                 Number of      Cumul. number      Number                 Cumul. number           Ratio of

from                     new                    of new             of 'saved'                    of 'saved'               new cases/

programme       affected         affected from          animals                          from                   /initial year

beginning         animals           programme                                              programme                  cases

                                                    beginning                                               beginning

FOR I=(YP+1) TO (N+YP)

  I                         DP(I)                PY+EM             DP(1)-DP(I)                    E+CD                   DP(I)/DP(1)

E = sum of (DP(1)-DP(I))

EM = sum of DP(I)

 

10.13-BIOLOGICAL EFFECT OF SPECIFIC ANIMAL DISEASE ERADICATION

Number of animals or herds or territory 's a v e d'  from the specific infectious disease = reduced number of new cases in comparison with initial incidence, thanks to reduced risk during the programme and post-eradication zero risk due to  c o n t i n u i n g  specific disease free status.

INPUT DATA:

     programme - EP$

     place - LU$

     period of the programme - PP$

     number of years of the programme                            - YP

     number of post-eradication years to be evaluated            - N

Evaluation in affected animals (a) or herds (h) or territory units (t) ? h

FOR I=1 TO YP

     year I :  number of new herds specifically affected  - DP(I)

New cases after eradication programme end:

FOR I=(YP+1) TO (N+YP)

     year I  from programme beginning: number of affected herds  DP(I)

 

BIOLOGICAL EFFECT  D U R I N G  SPECIFIC ANIMAL DISEASE ERADICATION PROGRAMME

Number of new affected herds during programme first year: DP(1)

Programme    Number of    Cumulative        Number of        Cumulative                Ratio of

  year                 new             number of          of 'saved'            number                  new cases/

                       affected           affected               herds             of 'saved'                 /initial year

                         herds               herds                                             herds                        cases

FOR I=1 TO YP

  I                      DP(I)                 PY                DP(1)-DP(I)             CD                      DP(I)/DP(1)

PY = sum of DP(I)

CD = sum of (DP(1)-DP(I))

 

BIOLOGICAL EFFECT  A F T E R  SPECIFIC ANIMAL DISEASE ERADICATION PROGRAMME

Number of new affected herds during programme first year: DP(1)

Year             Number of     Cumul. number        Number           Cumul. Number        Ratio of

from                   new                of new                of 'saved'              of 'saved'             new cases/

programme   affected        affected from              herds                     from                 /initial year

beginning       herds            programme                                         programme              cases

                                               beginning                                           beginning

FOR I=(YP+1) TO (N+YP)

  I                      DP(I)              PY+EM                DP(1)-DP(I)             E+CD                 DP(I)/DP(1)

E = sum of (DP(1)-DP(I))

EM = sum of DP(I)

 

10.13-BIOLOGICAL EFFECT OF SPECIFIC ANIMAL DISEASE ERADICATION

=============================================================

Number of animals or herds or territory 's a v e d'  from the specific infectious disease = reduced number of new cases in comparison with initial incidence, thanks to reduced risk during the programme and post-eradication zero risk due to  c o n t i n u i n g  specific disease free status.

INPUT DATA:

     programme - EP$

     place - LU$

     period of the programme - PP$

     number of years of the programme                            - YP

     number of post-eradication years to be evaluated            - N

Evaluation in affected animals (a) or herds (h) or territory units (t) ? t

FOR I=1 TO YP

     year I :  number of new territorial units specifically affected  - DP(I)

New cases after eradication programme end:

FOR I=(YP+1) TO (N+YP)

     year I  from programme beginning: number of affected territorial units  DP(I)

 

BIOLOGICAL EFFECT  D U R I N G  SPECIFIC ANIMAL DISEASE ERADICATION PROGRAMME

Number of new affected territorial units during programme first year: DP(1)

Programme     Number of     Cumulative        Number of       Cumulative             Ratio of

  year                    new            number of          of 'saved'           number               new cases/

                          affected         affected               ter.units       of 'saved'               /initial year

                          ter.units         ter.units                                       ter.units                  cases

FOR I=1 TO YP

  I                          DP(I)                PY                DP(1)-DP(I)           CD                  DP(I)/DP(1)

PY = sum of DP(I)

CD = sum of (DP(1)-DP(I))

 

BIOLOGICAL EFFECT  A F T E R  SPECIFIC ANIMAL DISEASE ERADICATION PROGRAMME

Number of new affected territorial units during programme first year: DP(1)

Year            Number of   Cumul. number     Number        Cumul. number             Ratio of

from                 new              of new             of 'saved'           of 'saved'                 new cases/

programme  affected       affected from       ter.units               from                     /initial year

beginning   ter.units       programme                                  programme                      cases

                                            beginning                                   beginning

FOR I=(YP+1) TO (N+YP)

  I                     DP(I)            PY+EM           DP(1)-DP(I)          E+CD                      DP(I)/DP(1)

E = sum of (DP(1)-DP(I))

EM = sum of DP(I)

 

10.14-IMPLEMENTATION OF ANIMAL POPULATION HEALTH PROGRAMME

 This subprogramme calculates: 1) implementation of individual programmes   (in terms of indicators or activities)

INPUT DATA:

     programme - PR$

     place, period - LU$,PE$

     measure units - MU$

In case of programme for partial reduction of number of diseased animals or foci or for partial increase of number of healthy animals or disease free herds/zones use as - planned value: the planned  d i f f e r e n c e  - real value: the real  d i f f e r e n c e   between initial and final situation !!.

     number of pairs of planned and real values - N

FOR I=1 TO N

         List of data:  I:     indicator/activity, planned value, real value - IN$(I),P(I),V(I)

RESULT:

    Indicator         V a l u e s             D i f f e r e n c e          IMPLEMENTATION

                        planned     real       absolute   relative              of programme

                                                                               %                              %

     IN$(I)           P(I)        V(I)         V(I)-P(I)      Z(I)                       Z(I)+100

Z(I)=((V(I)-P(I))/P(I))*100

 

10.14-IMPLEMENTATION OF ANIMAL POPULATION HEALTH PROGRAMME

 This subprogramme calculates: summary table of one implementation indicator  according to  2) space (territory)

INPUT DATA:

     programme - PR$

     indicator - IND$

     place, period - LU$,PE$

     measure units - MU$

In case of programme for partial reduction of number of diseased animals or foci or for partial increase of number of healthy animals or disease free herds/zones use as - planned value: the planned  d i f f e r e n c e  - real value: the real  d i f f e r e n c e   between initial and final situation !!.

     number of pairs of planned and real values - N

FOR I=1 TO N

         List of data:  I:     subterritory, planned value, real value - IN$(I),P(I),V(I)

RESULT:

                               V a l u e s              D i f f e r e n c e            IMPLEMENTATION

  Subterritory    planned    real      absolute      relative              of programme

  IN$(I)                   P(I)       V(I)       V(I)-P(I)       Z(I) %                 Z(I)+100 %

  T o t a l                  T          S              S-T        (S-T)/T*100 %     S/T*100 %

T = sum of P(I)

S = sum of V(I)

Z(I)=((V(I)-P(I))/P(I))*100

 

10.14-IMPLEMENTATION OF ANIMAL POPULATION HEALTH PROGRAMME

 This subprogramme calculates:  summary table of one implementation indicator  according to  3) time series

INPUT DATA:

     programme - PR$

     indicator - IND$

     place, period - LU$,PE$

     measure units - MU$

In case of programme for partial reduction of number of diseased animals or  foci or for partial increase of number of healthy animals or disease free herds/zones use as - planned value: the planned  d i f f e r e n c e  - real value: the real  d i f f e r e n c e  between initial and final situation !!.

     number of pairs of planned and real values - N

FOR I=1 TO N

         List of data:  I:     subperiod, planned value, real value - IN$(I),P(I),V(I)

RESULT:

                                V a l u e s            D i f f e r e n c e           IMPLEMENTATION

  Subperiod       planned    real      absolute      relative             of programme

  IN$(I)                  P(I)         V(I)       V(I)-P(I)      Z(I) %                Z(I)+100 %

  T o t a l                 T            S              S-T      (S-T)/T*100 %      S/T*100 %

T = sum of P(I)

S = sum of V(I)

Z(I)=((V(I)-P(I))/P(I))*100

 

 

 

       11-COMPLEMENTARY SUBPROGRAMMES - I

      

       1-Disease introduction risk assessment applying user-defined criteria

       2-Risk probability of test negative results in infected animals

       3-Risk probability that at least one animal import unit is infected

       4-Survival of diseased and vaccinated animals acc. to replacement

       5-Table of number changes of foci, intrafocal and diseased animals

       6-Point prevalence of foci and intrafocal diseased/exposed animals

       7-Table of foci and diseased animals incidence/extinction

       8-Table of slaughtered animals and disease findings

       9-Prevalence based on outbreaks, herd size and infection duration

       10-Relations between prevalence of population and of affected herds

       11-Animals/livestock units per territory/inhabitant/veterinarian

       12-Rates of spread of animal disease outbreaks

 

 

11.1-DISEASE INTRODUCTION RISK ASSESSMENT APPLYING USER-DEFINED CRITERIA

    This subprogramme calculates risk probability of specific infectious  disease agents' introduction into a territory (country, region, ranch, etc.)  from abroad applying non-predefined criteria and their probability grades.  The criteria of this 'b l a n c   m o d e l' to be selected and formulated   by the  u s e r   h i m s e l f  according to particular situation and needs.   The criteria selection, sequence, grading and the interpretation  of the result are to respect the logic, theoretical knowledge and practical  experience and must make epizootiological sense.

      Do you want, evaluating exporting territory situation,  to process probability grades of the criteria which:

   i n c r e a s e    d i s e a s e   a g e n t s   i n t r o d u c t i o n    r i s k (transmissibility, susceptibility of exposed animals, inability    to discover all diseased animals/herds,  inability to avoid disease agents    spread, ineffectiveness of pre-export 'filter', etc.)  - (i)                             or

   d e c r e a s e    d i s e a s e   a g e n t s   i n t r o d u c t i o n    r i s k (resistance of exposed animals, ability to discover all diseased    animals/herds, ability to avoid disease agents spread, effectiveness  of pre-export 'filter', etc.)                          - (d) ? i

INPUT DATA:

  Grades of selected criteria probability  must be major than 0 but not major   than 1, i.e. expressed as proportions (numbers between >0 and 1) !

     disease - DI$

     commodity to be introduced (imported) - animals   (a)     or animal raw products (p) ? a

     species/category                      - SP$

     number of animals to be imported      - NA

     name of importing unit/territory      - IC$

     name of exporting unit/territory      - EU$

Disproportionate increasing the number of criteria =   disproportionate (artificial) decreasing calculated risk value (in spite of the same situation) !                                                                                                                

    Situation in original  e x p o r t i n g  territory/population/unit:

     specific disease true occurrence grade (>0 - 1)      - PR

     How many other criteria to be processed              - CR

FOR I=1 TO CR

 Key risk increasing criteria, grade (>0-1 !):

       I:      criterion, grade - CR$(I),   G(I)

RESULT:

     Order   C r i t e r i o n                                  G r a d e

       I          CR$(I)                                                G(I)

G = multiple of G(I)

P=G*PR

Q=1-P; INF=SQR((P*Q)/NA)

 Risk probability grade of disease agents introduction  =  P +- 1.96*INF

         Estimated number of infected animals  to be probably introduced is about   NA*P

 

11.1-DISEASE INTRODUCTION RISK ASSESSMENT APPLYING USER-DEFINED CRITERIA

      Do you want, evaluating exporting territory situation,   to process probability grades of the criteria which:

   i n c r e a s e    d i s e a s e   a g e n t s   i n t r o d u c t i o n    r i s k (transmissibility, susceptibility of exposed animals, inability    to discover all diseased animals/herds,  inability to avoid disease agents   spread, ineffectiveness of pre-export 'filter', etc.)  - (i)        or   d e c r e a s e    d i s e a s e   a g e n t s   i n t r o d u c t i o n    r i s k (resistance of exposed animals, ability to discover all diseased    animals/herds, ability to avoid disease agents spread, effectiveness  of pre-export 'filter', etc.)                          - (d) ? d

INPUT DATA:

  Grades of selected criteria probability  must be major than 0 but not major   than 1, i.e. expressed as proportions (numbers between >0 and 1) !

     disease - DI$

     commodity to be introduced (imported) - animals  (a)  or animal raw products (p) ? a

     species/category                      - SP$

     number of animals to be imported      - NA

     name of importing unit/territory      - IC$

     name of exporting unit/territory      - EU$

 Disproportionate increasing the number of criteria =  disproportionate (artificial) decreasing calculated risk value  (in spite of the same situation) !                                                                                                                                                                                                                                          

    Situation in original  e x p o r t i n g  territory/population/unit:

     specific disease true occurrence grade (>0 - 1)      - PR

     How many other criteria to be processed              - CR

FOR I=1 TO CR

 Key risk decreasing criteria, grade (>0-1 !):

       I:      criterion, grade - CR$(I),   G(I)

RESULT:

     Order   C r i t e r i o n                                  G r a d e

       I            CR$(I)                                              G(I)

G = multiple of (1-G(I))

P=G*PR

Q=1-P; INF=SQR((P*Q)/NA)

 Risk probability grade of disease agents introduction  =  P +- 1.96*INF

         Estimated number of infected animals   to be probably introduced is about   NA*P

 

11.1-DISEASE INTRODUCTION RISK ASSESSMENT APPLYING USER-DEFINED CRITERIA

      Do you want, evaluating exporting territory situation,   to process probability grades of the criteria which:

   i n c r e a s e    d i s e a s e   a g e n t s   i n t r o d u c t i o n    r i s k (transmissibility, susceptibility of exposed animals, inability    to discover all diseased animals/herds,  inability to avoid disease agents    spread, ineffectiveness of pre-export 'filter', etc.)  - (i)     or    d e c r e a s e    d i s e a s e   a g e n t s   i n t r o d u c t i o n     r i s k (resistance of exposed animals, ability to discover all diseased    animals/herds, ability to avoid disease agents spread, effectiveness   of pre-export 'filter', etc.)                          - (d) ? i

INPUT DATA:

  Grades of selected criteria probability  must be major than 0 but not major   than 1, i.e. expressed as proportions (numbers between >0 and 1) !

     disease - DI$

     commodity to be introduced (imported) - animals (a) or animal raw products (p) ? p

     type of animal product                - TP$

     measure units                         - MU$

     quantity of product to be imported    - QP

     name of importing unit/territory      - IC$

     name of exporting unit/territory      - EU$

    Situation in original  e x p o r t i n g  territory/population/unit:

     specific disease true occurrence grade (>0 - 1)      - PR

     How many other criteria to be processed              - CR

FOR I=1 TO CR

 Key risk increasing criteria, grade (>0-1 !):

       I:      criterion, grade - CR$(I),   G(I)

RESULT:

     Order   C r i t e r i o n                                  G r a d e

       I              CR$(I)                                           G(I)

G = multiple of G(I)

P=G*PR

Q=1-P; INF=SQR((P*Q)/QP)

 Risk probability grade of disease agents introduction  =  P +- 1.96*INF

         Estimated quantity of infected or contaminated products   to be probably imported is about    QP*P MU$

 

11.1-DISEASE INTRODUCTION RISK ASSESSMENT APPLYING USER-DEFINED CRITERIA

      Do you want, evaluating exporting territory situation, to process probability grades of the criteria which:

   i n c r e a s e    d i s e a s e   a g e n t s   i n t r o d u c t i o n      r i s k (transmissibility, susceptibility of exposed animals, inability    to discover all diseased animals/herds,  inability to avoid disease agents    spread, ineffectiveness of pre-export 'filter', etc.)  - (i)    or   d e c r e a s e    d i s e a s e   a g e n t s   i n t r o d u c t i o n     r i s k (resistance of exposed animals, ability to discover all diseased    animals/herds, ability to avoid disease agents spread, effectiveness   of pre-export 'filter', etc.)                          - (d) ? d

INPUT DATA:

  Grades of selected criteria probability  must be major than 0 but not major   than 1, i.e. expressed as proportions (numbers between >0 and 1) !

     disease - DI$

     commodity to be introduced (imported) - animals  (a)   or animal raw products (p) ? p

     type of animal product                - TP$

     measure units                         - MU$

     quantity of product to be imported    - QP

     name of importing unit/territory      - IC$

     name of exporting unit/territory      - EU$

    Situation in original  e x p o r t i n g  territory/population/unit:

     specific disease true occurrence grade (>0 - 1)      - PR

     How many other criteria to be processed              - CR

FOR I=1 TO CR

 Key risk decreasing criteria, grade (>0-1 !):

       I:      criterion, grade - CR$(I),   G(I)

RESULT:

     Order   C r i t e r i o n                                  G r a d e

       I             CR$(I)                                            G(I)

G = multiple of (1-G(I))

P=G*PR

Q=1-P; INF=SQR((P*Q)/QP)

 Risk probability grade of disease agents introduction  =  P +- 1.96*INF

         Estimated quantity of infected or contaminated products  to be probably imported is about    QP*P MU$

 

11.2-RISK PROBABILITY OF TEST NEGATIVE RESULTS IN INFECTED ANIMALS                                                                                (Ref.: MacDiarmid)

1) Probability that an animal which gives negative results in disease  testing is actually infected with the disease agent

INPUT DATA:

     disease - D$                                   species - S$

     place - P$                                        time - T$

     true prevalence rate (number between >0 and <1 )           - P#

     test specificity (number between >0 and 1)                 - E#

     test sensitivity (number between >0 and 1)                 - S#

RESULT:

     Probability that an animal which gives negative results in disease   testing is actually infected with the disease agent =  P#*(1-S#)/(P#*(1-S#)+(1-P#)*E#)

 

11.2-RISK PROBABILITY OF TEST NEGATIVE RESULTS IN INFECTED ANIMALS                                                                                (Ref.: MacDiarmid)

2) Probability that an animal which gives negative results in disease  testing and is actually infected will be included in export group

 INPUT DATA:

     disease - D$                           species - S$

     place - P$                                time - T$

     true prevalence rate (number between >0 and <1 )           - P#

     test specificity (number between >0 and 1)                 - E#

     test sensitivity (number between >0 and 1)                 - S#

     number of animals in the group                             - N

RESULT:

Probability that an animal which gives negative results in disease testing  and is actually infected with the disease agent will be included   in the group for export =

  =   1-(((1-P#)*E#)/((1-P#)*E#+P#*(1-S#)))^N

 

11.2-RISK PROBABILITY OF TEST NEGATIVE RESULTS IN INFECTED ANIMALS                                                                                 (Ref.: MacDiarmid)

3) Probability of a given test failing to detect at least  one test-positive animal in an infected group

INPUT DATA:

     disease - D$                  species - S$

     place - P$                       time - T$

     true prevalence rate (number between >0 and <1 )           - P#

     test sensitivity (number between >0 and 1)                 - S#

     number of animals in the group                             - N

     number of animals from the group which are tested          - T

RESULT:

Probability of a given test failing to detect at least   one test-positive animal in an infected group  =   (1-((T*S#)/N))^X

X=P#*N

 

11.3-RISK PROBABILITY THAT AT LEAST ONE ANIMAL IMPORT UNIT    OF THE COMMODITY IMPORTATION IS INFECTED           (Ref.: Morley)

Note: Animal import unit = life animal or measure unit  of raw product of animal origin (e.g. specified weight of the product).

INPUT DATA:

     disease - D$

     animal import units (commodity) - S$

     place - P$                                    time - T$

     disease occurrence proportion in exporting territory  (number between >0 and <1) - CF1#

     probability of the pathogen being present at import time     - CF2#

     number of animal import units                                - N

A=(1-(CF1#*CF2#))^N

B=1-A

RESULT:

     Probability that at least one animal import unit  of the commodity importation is infected =  B

     Probability that no animal import units are infected   =  A

 

11.4-SURVIVAL OF CHRONICALLY DISEASED AND VACCINATED ANIMALS   ACCORDING TO POPULATION REPLACEMENT CYCLE

This subprogramme is applicable on groups of animals of a particular  epizootiological category such as chronically diseased, vaccinated, etc.   under the conditions that these animals are not prematurely removed   and in absence of migration. Duration of regular replacement cycle (generation or breeding or production    cycles) must be longer than evaluated period !

INPUT DATA:

     species, category(ies) - SP$,CA$

     epizootiological category - DI$

     place, period - PL$,TI$

     total number of animals of the given epizootiological  category  at the beginning of the period        - AB

     duration (in days) of one regular replacement cycle              - RC

     duration (in days) between the initial and evaluated  days within the replacement cycle        - PX

RESULT:

     Estimated number of animals of the given epizootiological category  existing at the beginning of the regular replacement cycle   and still remaining */ at the evaluated day  =  AB*(1-PX/RC)

     */ Note: If not eliminated prematurely and in absence of migration.

 

11.5-TABLES OF CHANGES IN NUMBERS OF FOCI, INTRAFOCAL AND DISEASED ANIMALS

   This subprogrammes creates tables of changes considering the  n u m b e r s      at the beginning, new cases, extinct cases and at the end of periods of:  1) foci 

INPUT DATA:

     title - NA$

     disease, species - DI$,SP$

     place (territory), period - PL$,TI$

     measure units - MU$          

Data according to individual places (p) or subperiods (s) ? p

     number of rows  - N

Respecting the sequence order and providing  a l l  data required, key  row names, values at the beginning, new cases, extinct cases, at the end :

FOR I= 1 TO N

    I   row:   CO$(I), C(I),D(I),E(I),F(I)

  Title: NA$

Subterritory       At beginning    New            Extinct        At the end

CO$(I)                         C(I)             D(I)               E(I)               F(I)

T o t a l                        C                  D                 E                   F

C = sum of C(I)

D = sum of previous D(I)

E = sum of previous E(I)

F = sum of F(I)

 

11.5-TABLES OF CHANGES IN NUMBERS OF FOCI, INTRAFOCAL AND DISEASED ANIMALS

   This subprogrammes creates tables of changes considering the  n u m b e r s     at the beginning, new cases, extinct cases and at the end of periods of:  2) intrafocal animals INPUT DATA:

     title - NA$

     disease, species - DI$,SP$

     place (territory), period - PL$,TI$

     measure units - MU$                     

Data according to individual places (p) or subperiods (s) ? s

Do you have data (real or estimated) on values at the beginning,    new cases, extinct cases and at the end of subperiods (a)   or only on initial value and values of new and extinct cases (b) ? a

     number of rows  - N

Respecting the sequence order and providing  a l l  data required, key  row names, values at the beginning, new cases, extinct cases, at the end :

FOR I= 1 TO N

    I   row:   CO$(I), C(I),D(I),E(I),F(I)

  Title: NA$

Subperiod          At beginning    New            Extinct        At the end

CO$(I)                          C(I)             D(I)              E(I)               F(I)

S=C(1)+D-E

T o t a l                        C(1)              D                  E                   S

D = sum of previous D(I)

E = sum of previous E(I)

 

11.5-TABLES OF CHANGES IN NUMBERS OF FOCI, INTRAFOCAL AND DISEASED ANIMALS

   This subprogrammes creates tables of changes considering the  n u m b e r s     at the beginning, new cases, extinct cases and at the end of periods of:    3) diseased animals

 INPUT DATA:

     title - NA$

     disease, species - DI$,SP$

     place (territory), period - PL$,TI$

     measure units - MU$                     

Data according to individual places (p) or subperiods (s) ? s

Do you have data (real or estimated) on values at the beginning,    new cases, extinct cases and at the end of subperiods (a)   or only on initial value and values of new and extinct cases (b) ? b

     number of rows  - N

     value at the beginning of the first row - B1

Respecting the sequence order and providing  a l l  data required, key   key row names, number of new cases, of extinct cases

FOR I= 1 TO N

    I. row:  CO$(I), D(I),E(I)

  Title: NA$

Subperiod               At beginning      New            Extinct        At the end

                                           B1

D = sum of previous D(I)

E = sum of previous E(I)

T = sum of (B1+D-E)

CO$(I)                                                   D(I)                 E(I)           cumul(B1+D-E)

T o t a l                               B1                D                     E                      T

 

11.6-POINT PREVALENCE OF FOCI AND INTRAFOCAL DISEASED/EXPOSED ANIMALS

This subprogramme summarizes in a simple table the above mentioned data   1) related to a selected disease according to different places

INPUT DATA:

     disease, form(s) - DI$,FO$

     species, category(ies) - SP$,CA$

     territory - TE$                           time (moment) - MO$

     number of places - N

     data source - DS$

Respecting the sequence order and providing  a l l  data required, key P l a c e name, number of foci, intrafocal animals, diseased animals:

FOR I=1 TO N

     I.  row:   CO$(I), C(I),D(I),E(I)

    POINT PREVALENCE OF FOCI AND INTRAFOCAL ANIMALS IN DIFFERENT PLACES

P l a c e       F o c i        I n t r a f o c a l             a n i m a l s         Intraf.Diseased

                                      T o t a l      Diseased       Exposed           Prevalence Rate

CO$(I)        C(I)                D(I)           E(I)             (D(I)-E(I))               E(I)/D(I)

T o t a l       C                   D                E                   (D-E)                       E/D

Average per focus        D/C            E/C              ((D-E)/C)                  E/D

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

 

11.6-POINT PREVALENCE OF FOCI AND INTRAFOCAL DISEASED/EXPOSED ANIMALS

This subprogramme summarizes in a simple table the above mentioned data   2) related to a selected disease according to different moments

 INPUT DATA:

     disease, form(s) - DI$,FO$

     species, category(ies) - SP$,CA$

     territory - TE$                                 period - PE$

     number of moments - N

     data source - DS$

Respecting the sequence order and providing  a l l  data required, key M o m e n t name, number of foci, intrafocal animals, diseased animals:

FOR I=1 TO N

     I.  row:   CO$(I), C(I),D(I),E(I)

    POINT PREVALENCE OF FOCI AND INTRAFOCAL ANIMALS IN DIFFERENT MOMENTS

M o m e n t   F o c i       I n t r a f o c a l            a n i m a l s   Intraf.Diseased

                                        T o t a l      Diseased       Exposed   Prevalence Rate

CO$(I)             C(I)            D(I)            E(I)             (D(I)-E(I))      E(I)/D(I)

T o t a l            C                 D                E                   (D-E)              E/D

Average per focus          D/C            E/C              ((D-E)/C)          E/D

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

 

11.6-POINT PREVALENCE OF FOCI AND INTRAFOCAL DISEASED/EXPOSED ANIMALS

This subprogramme summarizes in a simple table the above mentioned data   3) related to different diseases in the same territory and moment

INPUT DATA:

     species, category(ies) - SP$,CA$

     territory - TE$                         time (moment) - MO$

     number of diseases - N

     data source - DS$

Respecting the sequence order and providing  a l l  data required, key Disease name, number of foci, intrafocal animals, diseased animals:

FOR I=1 TO N

     I.  row:   CO$(I), C(I),D(I),E(I)

  PREVALENCE OF FOCI AND INTRAFOCAL ANIMALS ACCORDING TO DIFFERENT  DISEASES

Disease         F o c i           I n t r a f o c a l        a n i m a l s       Intraf.Diseased

                                          T o t a l      Diseased       Exposed     Prevalence Rate

CO$(I)              C(I)             D(I)             E(I)            (D(I)-E(I))    E(I)/D(I)

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

 

11.7-TABLES OF FOCI AND DISEASED ANIMALS INCIDENCE/EXTINCTION

This subprogramme summarizes in a table the above mentioned data  1) related to a selected disease according to different places

INPUT DATA:

     disease, form(s) - DI$,FO$

     species, category(ies) - SP$,CA$

     territory - TE$                            total period - MO$

     number of places  - N

FOR I= 1 TO N

Respecting the sequence order and providing  a l l  data required, key P l a c e name, number of new foci, extinct foci, newly diseased animals, dead+killed diseased animals, slaughtered diseased animals, slaughtered suspect animals:

      row  I. :  CO$(I),  C(I),D(I),E(I),F(I),G(I),H(I)

     INCIDENCE/EXTINCTION OF FOCI AND DISEASED ANIMALS IN DIFFERENT PLACES

P l a c e     F   o   c   i             D i s e a s e d  A n i m a l s      Suspect Animals

                  New    Extinct      New      Dead+Kil.  Slaught.      Slaughtered

CO$(I)       C(I)        D(I)         E(I)           F(I)            G(I)                  H(I)

T o t a l        C           D             E              F                  G                    H

Animals per one new focus   E/C)      F/C               G/C                 H/C

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

H = sum of H(I)

 

11.7-TABLES OF FOCI AND DISEASED ANIMALS INCIDENCE/EXTINCTION

This subprogramme summarizes in a table the above mentioned data   2) related to a selected disease according to different subperiods

INPUT DATA:

     disease, form(s) - DI$,FO$

     species, category(ies) - SP$,CA$

     territory - TE$                                total period - PE$

     number of subperiods  - N

FOR I= 1 TO N

Respecting the sequence order and providing  a l l  data required, key Subperiod name, number of new foci, extinct foci, newly diseased animals, dead+killed diseased animals, slaughtered diseased animals, slaughtered suspect animals:

      row  I. :  CO$(I),  C(I),D(I),E(I),F(I),G(I),H(I)

     INCIDENCE/EXTINCTION OF FOCI AND DISEASED ANIMALS IN DIFFERENT PERIODS

Subperiod     F   o   c   i           D i s e a s e d  A n i m a l s     Suspect An.

                     New    Extinct      New     Dead+Kil. Slaught.    Slaughtered

CO$(I)          C(I)      D(I)          E(I)            F(I)         G(I)               H(I)

T o t a l          C         D              E                F              G                 H

Animals per one new focus   E/C)          F/C          G/C             H/C

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

H = sum of H(I)

 

11.7-TABLES OF FOCI AND DISEASED ANIMALS INCIDENCE/EXTINCTION

This subprogramme summarizes in a table the above mentioned data   3) related to different diseases in the same territory and period

INPUT DATA:

     species, category(ies) - SP$,CA$

     territory - TE$                          total period - MO$

     number of diseases  - N

FOR I= 1 TO N

Respecting the sequence order and providing  a l l  data required, key Disease name, number of new foci, extinct foci, newly diseased animals, dead+killed diseased animals, slaughtered diseased animals, slaughtered suspect animals:

      row  I. :  CO$(I),  C(I),D(I),E(I),F(I),G(I),H(I)

       INCIDENCE/EXTINCTION OF SPECIFIC DISEASES FOCI AND AFFECTED ANIMALS

Disease       F   o   c   i          D i s e a s e d  A n i m a l s      Suspect An.

                  New    Extinct      New    Dead+Kil.   Slaught.    Slaughtered

CO$(I)        C(I)     D(I)          E(I)         F(I)             G(I)                H(I)

T o t a l        C        D              E              F                 G                  H

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

H = sum of H(I)

 

11.8-TABLES OF SLAUGHTERED ANIMALS AND DISEASES FINDINGS

This subprogramme summarizes data on the findings during the slaughtered  animals' and meat inspection in abattoirs:   1) Total slaughtered animals, edible, conditionally edible

Do you want to process data according to places (p) or subperiods (t) ? p

INPUT DATA

     species, category(ies) - SP$,CA$

     territory, period - PL$,TI$

     number of places - N

FOR I=1 TO N

Respecting the sequence order  and providing  a l l  data required (real or estimated),   key P l a c e names and continue with columns values of    total slaughtered, edible, conditionally edible after sterilization,  conditionally edible after other treatment:

     I  row:           CO$(I),  C(I),D(I),E(I),F(I)

       VETERINARY  INSPECTION  DECISION  ON  SLAUGHTERED  ANIMALS

P l a c e     T o t a l          Edible       Conditionally edible           Non edible

               slaughtered                        steriliz.         other treat.

CO$(I)        C(I)                 D(I)             E(I)                F(I)        C(I)-(D(I)+E(I)+F(I))

T o t a l       C                     D                  E                   F                C-(D+E+F)

Proportion  1.0000         D/C               E/C               F/C           (C-(D+E+F))/C

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

 

11.8-TABLES OF SLAUGHTERED ANIMALS AND DISEASES FINDINGS

This subprogramme summarizes data on the findings during the slaughtered  animals' and meat inspection in abattoirs:   2) Sanitary (emergency) slaughtered animals

Do you want to process data according to places (p) or subperiods (t) ? t

INPUT DATA

     species, category(ies) - SP$,CA$

     territory, period - PL$,TI$

     number of subperiods - N

FOR I=1 TO N

Respecting the sequence order   and providing  a l l  data required (real or estimated),   key Subperiod names and continue with columns values of  total slaughtered, sanitary slaughtered:

     I  row:           CO$(I),  C(I),D(I)

      NUMBER OF TOTAL AND  S A N I T A R Y  SLAUGHTERED ANIMALS

Subperiod     T o t a l           Sanitary         Proportion    Percentage

                   slaughtered     slaughtered

CO$(I)               C(I)                  D(I)               D(I)/C(I)   (D(I)/C(I))*100

T o t a l              C                       D                      D/C          (D/C)*100

C = sum of C(I)

D = sum of D(I)

 

11.8-TABLES OF SLAUGHTERED ANIMALS AND DISEASES FINDINGS

This subprogramme summarizes data on the findings during the slaughtered  animals' and meat inspection in abattoirs:   3) Disease findings during slaughtered animals' and meat inspection

INPUT DATA

     species, category(ies) - SP$,CA$

     territory, period - PL$,TI$

     number of subperiods - N

FOR I=1 TO N

     number of slaughtered animals - T

     number of selected diseases - causes  - N

FOR I=1 TO N

Respecting the sequence order  and providing  a l l  data required (real or estimated), key specific disease name, number of disease findings:

     I  row:

           CO$(I),  C(I)

  SLAUGHTERED ANIMALS AND MEAT INSPECTION  D I S E A S E S'   F I N D I N G S

D i s e a s e   Number of      Proportion      %                Proportion             %

                        findings           of  total      findings        of total slaughtered

CO$(I)                C(I)                 C(I)/C    (C(I)/C)*100    C(I)/T          (C(I)/T)*100

T o t a l                C                  1.0000        100.0000          C/T             (C/T)*100

C = sum of C(I)

 

11.8-TABLES OF SLAUGHTERED ANIMALS AND DISEASES FINDINGS

This subprogramme summarizes data on the findings during the slaughtered  animals' and meat inspection in abattoirs:   4) Confiscation of internal organs of slaughtered animals

Do you want to process data according to places (p) or subperiods (t) ? t

INPUT DATA

     species, category(ies) - SP$,CA$

     territory, period - PL$,TI$

     number of subperiods - N

FOR I=1 TO N

Respecting the sequence order  and providing  a l l  data required (real or estimated),  key Subperiod names and continue with columns values of  confiscated lungs, hearts, livers, spleens, kidneys

     I  row:           CO$(I),  C(I),D(I),E(I),F(I),G(I)

     C O N F I S C A T I O N  OF SLAUGHTERED ANIMALS INTERNAL ORGANS

Subperiod    Lungs       Hearts      Livers      Spleens     Kidneys

CO$(I)             C(I)           D(I)            E(I)            F(I)            G(I)

T o t a l            C                D               E                F                G

C = sum of C(I)

D = sum of D(I)

E = sum of E(I)

F = sum of F(I)

G = sum of G(I)

 

11.8-TABLES OF SLAUGHTERED ANIMALS AND DISEASES FINDINGS

This subprogramme summarizes data on the findings during the slaughtered  animals' and meat inspection in abattoirs:   5) Causes of premature slaughter

INPUT DATA

     species, category(ies) - SP$,CA$

     territory, period - PL$,TI$

     number of subperiods - N

FOR I=1 TO N

     number of slaughtered animals - T

     number of selected diseases - causes  - N

FOR I=1 TO N

Respecting the sequence order  and providing  a l l  data required (real or estimated),   key disease -  causes names, number of cases :

     I  row:           CO$(I),  C(I)

    C A U S E S    OF   P R E M A T U R E   S L A U G H T E R  OF ANIMALS

C a u s e s     Number of        Proportion           %                          Proportion                         %

                           cases            of total cases                                    of total slaughtered

CO$(I)                 C(I)                  C(I)/C       (C(I)/C)*100                C(I)/T                          (C(I)/T)*100

T o t a l                C                     1.0000         100.0000                       C/T                              (C/T)*100

C = sum of C(I)

 

11.9-PREVALENCE OF INTRAFOCAL ANIMALS BASED ON THE NUMBER  OF OUTBREAKS, AVERAGE HERD SIZE AND INFECTION DURATION

IMPUT DATA:                                                                                                                                                                                                                  (Ref.: Morley – adapted by author)

     disease, species - D$,S$

     place, a n n u a l  period - P$,T$

     number of animals in the population                        - A

     number of outbreaks in previous 12 months                  - O

     average herd size                                          - HS

Note: Multiple of outbreaks and average herd size cannot be major than  the total number of animals in the population !

     average duration of infection outbreaks in days            - DID

DI=DID/365

RESULT:

    Estimated  annual period prevalence rate of intrafocal animals  based on the number of the outbreaks, average herd size   and outbreak duration   =  (O*HS*DI)/A

 

11.10-RELATIONS BETWEEN POPULATION PREVALENCE AND AFFECTED HERDS PREVALENCE

(relations between the values of disease morbidity and nidality; applicable if affected herds' composition and size are relatively homogenous)

INPUT DATA:

     disease     - DI$       species     - SP$

     place       - PL$        time        - TI$

Answer only  t w o  questions about rates (>0 - 1) to calculate the value of the third one !

  population prevalence rate of diseased animals                    - PPR

  average prevalence rate of diseased animals in affected herds     - AHP

  prevalence rate of affected herds                                 - PRO

RESULT:

   Estimated population prevalence rate of diseased animals  =  PRO*AHP

   Estimated average prevalence rate of diseased animals in affected herds  =  PPR/PRO

   Estimated prevalence rate of affected herds  =  PPR/AHP

 

11.11-ANIMALS AND LIVESTOCK UNITS PER TERRITORY UNIT, INHABITANT  AND VETERINARIAN

 This subprogramme calculates:  1) average number of animals per territory unit

Pre-defined list of animal species: cattle, dairy cows, buffaloes, horses,  mules/asses, camels, sheep, goats, pigs, chickens and other poultry.

INPUT DATA:

territory, time - T$,D$

    number of cattle total, dairy cows, buffaloes - A,B,C

    number of horses, mules/asses, camels         - D,E,F

    number of sheep, goats, pigs                  - G,H,I

    number of chickens,  other poultry            - J,K

     territory measure units                   - TMU$

     land total                                  - T1

     arable land                                 - T2

     pastures                                    - T3

RESULTS:

                   Average number of animals per TMU$

         Species            Total        Arable         Pastures

                                   Land         Land

         cattle                A/T1         A/T2           A/T3

         dairy cows      B/T1           B/T2           B/T3

         buffaloes         C/T1          C/T2           C/T3

         horses             D/T1          D/T2           D/T3

         mules/asses    E/T1          E/T2            E/T3

         camels              F/T1          F/T2            F/T3

         sheep               G/T1          G/T2           G/T3

         goats               H/T1          H/T2           H/T3

         pigs                  I/T1           I/T2             I/T3

         chickens          J/T1           J/T2            J/T3

         other poultry   K/T1         K/T2           K/T3

 

11.11-ANIMALS AND LIVESTOCK UNITS PER TERRITORY UNIT, INHABITANT  AND VETERINARIAN

 This subprogramme calculates :  2) average number of animals per inhabitant

Pre-defined list of animal species: cattle, dairy cows, buffaloes, horses,  mules/asses, camels, sheep, goats, pigs, chickens and other poultry.

INPUT DATA:

territory, time - T$,D$

    number of cattle total, dairy cows, buffaloes - A,B,C

    number of horses, mules/asses, camels         - D,E,F

    number of sheep, goats, pigs                  - G,H,I

    number of chickens,  other poultry            - J,K

     total number of inhabitants                     - P1

     inhabitants in rural areas                      - P2

     inhabitants in urban areas                      - P3

RESULTS:

              Average number of animals per inhabitant

         Species           Inhabitant    Inhabitant    Inhabitant

                                     in rural        in urban

                                      areas           areas

         cattle                  A/P1         A/P2          A/P3

         dairy cows         B/P1         B/P2           B/P3

         buffaloes           C/P1         C/P2           C/P3

         horses                D/P1         D/P2           D/P3

         mules/asses      E/P1          E/P2            E/P3

         camels                F/P1         F/P2             F/P3

         sheep                 G/P1         G/P2            G/P3

         goats                 H/P1         H/P2            H/P3

         pigs                    I/P1           I/P2             I/P3

         chickens            J/P1          J/P2             J/P3

         other poultry    K/P1         K/P2           K/P3

 

11.11-ANIMALS AND LIVESTOCK UNITS PER TERRITORY UNIT, INHABITANT  AND VETERINARIAN

 This subprogramme calculates :  3) average number of animals per veterinarian

INPUT DATA:

territory, time - T$,D$

    number of cattle total, dairy cows, buffaloes - A,B,C

    number of horses, mules/asses, camels         - D,E,F

    number of sheep, goats, pigs                  - G,H,I

    number of chickens,  other poultry            - J,K

     total veterinarians                           - V1

     governmental veterinarians                    - V2

     private veterinarians                         - V3

RESULTS:

         Average number of animals per veterinarian

         Species            Veterinarian  Government    Private

                                                          Veterinarian   Veterinarian

         cattle                  A/V1                A/V2              A/V3

         dairy cows         B/V1                B/V2               B/V3

         buffaloes           C/V1                 C/V2              C/V3

         horses               D/V1                 D/V2              D/V3

         mules/asses      E/V1                 E/V2               E/V3

         camels               F/V1                  F/V2               F/V3

         sheep                G/V1                  G/V2              G/V3

         goats                 H/V1                 H/V2              H/V3

         pigs                    I/V1                   I/V2                I/V3

         chickens            J/V1                  J/V2                J/V3

         other poultry    K/V1                 K/V2               K/V3

 

11.11-ANIMALS AND LIVESTOCK UNITS PER TERRITORY UNIT, INHABITANT  AND VETERINARIAN

 This subprogramme calculates:   4) total number of livestock units

INPUT DATA:

territory, time - T$,D$

    number of cattle total, dairy cows, buffaloes - A,B,C

    number of horses, mules/asses, camels         - D,E,F

    number of sheep, goats, pigs                  - G,H,I

    number of chickens,  other poultry            - J,K

         Livestock units rates:

  a) FAO Animal Health Service (AGAH) conversion rates are as follows: Cattle (without dairy cows) = 0.5; dairy cows = 1; buffaloes = 0.5; horses = 1; mules/asses = 0.5; camels = 1; sheep = 0.1; goats = 0.1; pigs = 0.2; chicken = 0.01; other poultry = 0.01.

  b) FAO Statistic Division (ESSD) conversion rates are as follows:  Cattle = 0.7; buffaloes = 1; horses = 1; mules/asses = 0.8; camels = 1.1; sheep = 0.1; goats = 0.1; pigs = 0.25; chicken = 0.01; other poultry = 0.01.

Which conversion rates do you wish ? FAO Animal Health Service (AGAH) rate (a) or FAO Statistic Division (ESSD) rate (b) or a particular one (p) ? a

RESULTS:

LU1=A*.5+B*1+C*.5+D*1+E*.5+F*1+G*.1+H*.1+I*.2+J*.01+K*.01

LU2=A*.7+C*1+D*1+E*.8+F*1.1+G*.1+H*.1+I*.25+J*.01+K*.015

LU3=A*CA+B*CB+C*CC+D*CD+E*CE+F*CF+G*CG+H*CCH+I*CI+J*CJ+K*CK

         Total number of livestock units   =  LU1

 

11.11-ANIMALS AND LIVESTOCK UNITS PER TERRITORY UNIT, INHABITANT   AND VETERINARIAN

 This subprogramme calculates :  5) average number of livestock units per territory unit

INPUT DATA:

territory, time - T$,D$

    number of cattle total, dairy cows, buffaloes - A,B,C

    number of horses, mules/asses, camels         - D,E,F

    number of sheep, goats, pigs                  - G,H,I

    number of chickens,  other poultry            - J,K

     territory measure units                   - TMU$

     land total                                  - T1

     arable land                                 - T2

     pastures                                    - T3

         Livestock units rates:

  a) FAO Animal Health Service (AGAH) conversion rates are as follows: Cattle (without dairy cows) = 0.5; dairy cows = 1; buffaloes = 0.5; horses = 1; mules/asses = 0.5; camels = 1; sheep = 0.1; goats = 0.1; pigs = 0.2; chicken = 0.01; other poultry = 0.01.

  b) FAO Statistic Division (ESSD) conversion rates are as follows: Cattle = 0.7; buffaloes = 1; horses = 1; mules/asses = 0.8; camels = 1.1; sheep = 0.1; goats = 0.1; pigs = 0.25; chicken = 0.01; other poultry = 0.01.

Which conversion rates do you wish ? FAO Animal Health Service (AGAH) rate (a) or FAO Statistic Division (ESSD) rate (b) or a particular one (p) ? b

RESULTS:

LU1=A*.5+B*1+C*.5+D*1+E*.5+F*1+G*.1+H*.1+I*.2+J*.01+K*.01

LU2=A*.7+C*1+D*1+E*.8+F*1.1+G*.1+H*.1+I*.25+J*.01+K*.015

LU3=A*CA+B*CB+C*CC+D*CD+E*CE+F*CF+G*CG+H*CCH+I*CI+J*CJ+K*CK

              Total livestock units =  LU2

                 Average number of livestock units per territory unit

                                                     Total         Arable        Pastures

                                                      Land          Land

Livestock units per TMU$       LU2/T1     LU2/T2        LU2/T3

 

11.11-ANIMALS AND LIVESTOCK UNITS PER TERRITORY UNIT, INHABITANT  AND VETERINARIAN

 This subprogramme calculates :   6) average number of livestock units per inhabitant

INPUT DATA:

territory, time - T$,D$

    number of cattle total, dairy cows, buffaloes - A,B,C

    number of horses, mules/asses, camels         - D,E,F

    number of sheep, goats, pigs                  - G,H,I

    number of chickens,  other poultry            - J,K

     total number of inhabitants                     - P1

     inhabitants in rural areas                      - P2

     inhabitants in urban areas                      - P3

         Livestock units rates:

  a) FAO Animal Health Service (AGAH) conversion rates are as follows:  Cattle (without dairy cows) = 0.5; dairy cows = 1; buffaloes = 0.5; horses = 1; mules/asses = 0.5; camels = 1; sheep = 0.1; goats = 0.1; pigs = 0.2; chicken = 0.01; other poultry = 0.01.

  b) FAO Statistic Division (ESSD) conversion rates are as follows: Cattle = 0.7; buffaloes = 1; horses = 1; mules/asses = 0.8; camels = 1.1; sheep = 0.1; goats = 0.1; pigs = 0.25; chicken = 0.01; other poultry = 0.01.

Which conversion rates do you wish ? FAO Animal Health Service (AGAH) rate (a) or FAO Statistic Division (ESSD) rate (b) or a particular one (p) ? p

If you wish to apply different conversion rates enter numbers in following table:

     conversion rates for  cattle total, dairy cows, buffaloes - CA,CB,CC

     conversion rates for horses, mules+asses,camels          - CD,CE,CF

     conversion rates for sheep, goats, pigs                   - CG,CCH,CI

     conversion rates for chickens, other poultry            - CJ,CK

RESULTS:

LU1=A*.5+B*1+C*.5+D*1+E*.5+F*1+G*.1+H*.1+I*.2+J*.01+K*.01

LU2=A*.7+C*1+D*1+E*.8+F*1.1+G*.1+H*.1+I*.25+J*.01+K*.015

LU3=A*CA+B*CB+C*CC+D*CD+E*CE+F*CF+G*CG+H*CCH+I*CI+J*CJ+K*CK

              Total livestock units =  LU3

         Average number of livestock units per inhabitant

                             Inhabitant    Inhabitant    Inhabitant

                                in rural        in urban

                                   areas         areas

Livestock units      LU3/P1       LU3/P2        LU3/P3

 

11.11-ANIMALS AND LIVESTOCK UNITS PER TERRITORY UNIT, INHABITANT   AND VETERINARIAN

 This subprogramme calculates :  7) average number of livestock units per veterinarian

INPUT DATA:

territory, time - T$,D$

    number of cattle total, dairy cows, buffaloes - A,B,C

    number of horses, mules/asses, camels         - D,E,F

    number of sheep, goats, pigs                  - G,H,I

    number of chickens,  other poultry            - J,K

     total veterinarians                           - V1

     governmental veterinarians                    - V2

     private veterinarians                         - V3

         Livestock units rates:

  a) FAO Animal Health Service (AGAH) conversion rates are as follows: Cattle (without dairy cows) = 0.5; dairy cows = 1; buffaloes = 0.5; horses = 1; mules/asses = 0.5; camels = 1; sheep = 0.1; goats = 0.1; pigs = 0.2; chicken = 0.01; other poultry = 0.01.

  b) FAO Statistic Division (ESSD) conversion rates are as follows: Cattle = 0.7; buffaloes = 1; horses = 1; mules/asses = 0.8; camels = 1.1; sheep = 0.1; goats = 0.1; pigs = 0.25; chicken = 0.01; other poultry = 0.01.

Which conversion rates do you wish ? FAO Animal Health Service (AGAH) rate (a) or FAO Statistic Division (ESSD) rate (b) or a particular one (p) ? a

RESULT:

LU1=A*.5+B*1+C*.5+D*1+E*.5+F*1+G*.1+H*.1+I*.2+J*.01+K*.01

LU2=A*.7+C*1+D*1+E*.8+F*1.1+G*.1+H*.1+I*.25+J*.01+K*.015

LU3=A*CA+B*CB+C*CC+D*CD+E*CE+F*CF+G*CG+H*CCH+I*CI+J*CJ+K*CK

              Total livestock units =  LU1

                       Average number of livestock units per veterinarian

                                     Veterinarian    Governmental    Private

                                                               Veterinarian     Veterinarian

Livestock units              LU1/V1            LU1/V2            LU1/V3

 

11.11-ANIMALS AND LIVESTOCK UNITS PER TERRITORY UNIT, INHABITANT  AND VETERINARIAN

 This subprogramme calculates :  8) average number of territory units per veterinarian

 INPUT DATA:

territory, time - T$,D$

     total veterinarians                           - V1

     governmental veterinarians                    - V2

     private veterinarians                         - V3

     territory measure units                   - TMU$

     land total                                  - T1

     arable land                                 - T2

     pastures                                    - T3

RESULTS:

    Average number of territory measure units per veterinarian

         Territory           Veterinarian  Government       Private

                                                          Veterinarian     Veterinarian

total land                      T1/V1             T1/V2              T1/V3

arable land                   T2/V1             T2/V2               T2/V3

pastures                       T3/V1             T3/V2               T3/V3

 

11.11-ANIMALS AND LIVESTOCK UNITS PER TERRITORY UNIT, INHABITANT   AND VETERINARIAN

 This subprogramme calculates :  9) average number of inhabitants per veterinarian

INPUT DATA:

territory, time - T$,D$

     total veterinarians                           - V1

     governmental veterinarians                    - V2

     private veterinarians                         - V3

     total number of inhabitants                     - P1

     inhabitants in rural areas                      - P2

     inhabitants in urban areas                      - P3

RESULTS:

                     Average number of inhabitants per veterinarian

         Inhabitants                 Veterinarian  Government        Private

                                                                     Veterinarian    Veterinarian

Total inhabitants                     P1/V1            P1/V2              P1/V3

Inhabitants in rural areas       P2/V1            P2/V2              P2/V3

Inhabitants in urban areas     P3/V1            P3/V2              P3/V3

 

11.12-RATES OF SPREAD OF ANIMAL DISEASES' OUTBREAKS

INPUT DATA:

     disease, type of outbreaks - DI$,OT$

     territory, period - PL$,TI$

Do you have data according to subterritories (t) or subperiods (p) ? t

     number of rows  - N

FOR I= 1 TO N

Key row names, number of primary outbreaks, secondary outbreaks

     I   row:  CO$(I),  C(I),D(I)

RESULT:

Subterritory  Outbreaks   P r i m a r y                S e c o n d a r y         Prim/Sec.

                       T o t a l       Total    Rate               Total        Rate           R a t i o

                                                                                                                        1 :

CO$(I)              T(I)             C(I)     C(I)/T(I)         D(I)      D(I)/T(I)       D(I)/C(I)

T o t a l              T                 C           C/T               D            D/T              D/C

T(I)=C(I)+D(I)

C = sum of C(I)

D = sum of D(I)

T = T+C(I)+D(I)

 

11.12-RATES OF SPREAD OF ANIMAL DISEASES' OUTBREAKS

INPUT DATA:

     disease, type of outbreaks - DI$,OT$

     territory, period - PL$,TI$

Do you have data according to subterritories (t) or subperiods (p) ? p

     number of rows  - N

FOR I= 1 TO N

Key row names, number of primary outbreaks, secondary outbreaks

     I   row:  CO$(I),  C(I),D(I)

RESULT:

Subperiod     Outbreaks       P r i m a r y          S e c o n d a r y         Prim/Sec.

                        T o t a l          Total    Rate          Total     Rate             R a t i o

                                                                                                                      1 :

CO$(I)                T(I)            C(I)     C(I)/T(I)      D(I)      D(I)/T(I)       D(I)/C(I)

T o t a l              T                  C           C/T            D            D/T              D/C

T(I)=C(I)+D(I)

C = sum of C(I)

D = sum of D(I)

T = T+C(I)+D(I)

 

 

 

         12-COMPLEMENTARY SUBPROGRAMMES - II

       

         1-Health rates' adjustment based on category structure standards

         2-Morbidity/mortality adjustment based on category rates' standards

         3-Two populations rates' adjustment based on standard proportions

         4-Two populations rates' adjustment based on category standards

         5-Selection of methods for specific disease control programme

         6-Survey response rate

         7-Dilution of solution for disinfection, disinfestation, etc.

         8-Summary value of animal products per one veterinarian

         9-Value of individual animal products per one veterinarian

         10-Animal commodity export/import size per one veterinarian

         11-Per capita production of food of animal origin

         12-Selection of priority diseases for control programme

         13-True prevalence estimation based on diag. method detectability

 

 

12.1-POPULATION HEALTH RATES' ADJUSTMENT BASED ON CATEGORY STRUCTURE STANDARDS                                                           (Ref.: Rose, Barker)

This subprogramme calculates the comparison adjustment of stratified morbidity  (incidence, prevalence) rates, mortality rates, etc. using direct  standardization based on known standard category structure of the reference  population.  It includes a weighted average of the stratum - specific rates with weights  equal to the proportion of animals in each stratum group in a convenient  reference population.

INPUT DATA:   (proportions and rates in form of numbers between >0 and 1 !)

    place, time - PL$,TI$

    species - SP$                category(ies)  - CA$

    disease(s)/form - DI$

    rate type - RA$

    number of stratum groups - subcategories - N

FOR I=1 TO N

  Do you have relative - proportions (r) or absolute data (a)  on standard category structure  ? r

    List of data - subcategory names,   proportions of reference population (sum = 1.0 !), rates:

I:   subcategory, proportion, rate - CN$(I),P(I),R(I)

R = sum of R(I)

PO = sum of P(I)

ST = sum of (R(I)*(P(I)/PO))

       T A B L E  OF  D I R E C T   S T A N D A R D I Z A T I O N

    Subcategory           Proportion           Subcategory   Standardized

    (Stratum Group)     of Reference         RA$                     Rate

                                     Population            Rate

                                     in Subcategory

    CN$(I)                          P(I)/PO              R(I)           (R(I)*(P(I)/PO))

    T o t a l                        1.0000                                              ST

    Direct adjusted (standardized) RA$ rate of total population in study  =   ST

 

12.1-POPULATION HEALTH RATES' ADJUSTMENT BASED ON CATEGORY STRUCTURE STANDARDS                                                  (Ref.: Rose, Barker)

 This subprogramme calculates the comparison adjustment of stratified morbidity  (incidence, prevalence) rates, mortality rates, etc. using direct  standardization based on known standard category structure of the reference  population.  It includes a weighted average of the stratum - specific rates with weights  equal to the proportion of animals in each stratum group in a convenient  reference population.

INPUT DATA:

    place, time - PL$,TI$

    species - SP$          category(ies)  - CA$

    disease(s)/form - DI$

    rate type - RA$

    number of stratum groups - subcategories - N

FOR I=1 TO N

  Do you have relative - proportions (r) or absolute data (a)  on standard category structure  ? a

    List of data - subcategory names,    numbers of reference population, rates:

I:   subcategory, number, rate value - CN$(I),SN(I),R(I)

R = sum of R(I)

S = sum of SN(I)

P(I) = SN(I)/S

PO = sum of P(I)

ST = sum of (R(I)*(P(I)/PO))

       T A B L E  OF  D I R E C T   S T A N D A R D I Z A T I O N

    Subcategory           Proportion             Subcategory   Standardized

    (Stratum Group)     of Reference              RA$                  Rate

                                     Population                 Rate

                                     in Subcategory

    CN$(I)                          P(I)/PO                   R(I)          (R(I)*(P(I)/PO))

    T o t a l                        1.0000                                                 ST

    Direct adjusted (standardized) RA$ rate of total population in study  =  ST

 

12.2-MORBIDITY/MORTALITY ADJUSTMENT BASED ON CATEGORY  RATES' STANDARDS                                                                 (Ref.: Rose, Barker)

 This subprogramme calculates the comparison adjustment of the stratified   morbidity (incidence, prevalence) rates, mortality rates, etc. using     indirect standardization based on known standard stratum-specific   rates of the reference population.

INPUT DATA:

    place, time - PL$,TI$

    species - SP$        category(ies) - CA$

    disease(s)/form - DI$

    rate type - RA$

    observed cases - OC

    number of stratum-specific groups - subcategories - N

FOR I=1 TO N

    List of data - subcategory names, number in study,  standard rate in reference group (in form of a number between >0 and 1 !):

I:   subcategory, number in study, standard rate - CN$(I),R(I),P(I)

        total reference population standard rate – TPS

RESULT:

    Subcategory         Number         Standard          Expected

    (Stratum)                in Study         RA$                  Cases

                                                              Rate

    CN$(I)                         R(I)               P(I)               (R(I)*P(I)

R = sum of R(I)

ST = sum of (R(I)*P(I))

    T o t a l                        R                 TPS                     ST

                   Indexed rate  = ST/R

                   Standardizing factor  = TPS/(ST/R)

                   Standardized rate     = (TPS/(ST/R))*(OC/R)

    Adjusted relative risk (standardized RA$ ratio) =  observed cases/expected cases = OC /ST =  (OC/ST)*100 %

 

12.3-TWO POPULATIONS RATES' COMPARISON ADJUSTMENT BASED ON STANDARD PROPORTIONS                                     (Ref.: Jenicek et al., Martin et al.)

(direct standardization based on two populations' category structure)

  This subprogramme calculates the comparison adjustment of morbidity or mortality rates (investigation results) in two populations (herds, flocks, groups, etc.) with the same categories (according to sex, age, breed, etc.) but in different proportions influencing the comparison result.  The adjusted rate give the expected rate if the observed stratum-specific rates are applied in a standard population.

INPUT DATA:

     place, time - PL$,TI$

     species, disease(s) - SP$,DI$

     indicator/rate  - IN$

     category(ies) - CA$

     population A, population B - P1,P2

     number of subcategories - N

FOR I=1 TO N

List of data - subcategory names, number of animals, observed cases:

I:  population A:  subcategory, number of animals, cases - SC$(I),A1(I),D1(I)

I:  population B (do not repeat the name of subcategory !):

               subcategory:   number of animals, cases - A2(I),D2(I)

     S U M M A R Y   T A B L E   OF  B A S I C   I N P U T    D A T A

                          P o p u l a t i o n      A                      P o p u l a t i o n      B

                           --------------------------------            -------------------------------------

 Subcategory  Number  of  Animals  Rate          Number  of  Animals    Rate

                          --------------------------                     --------------------------

                           Total       Cases                             Total       Cases

 SC$(I)               A1(I)        D1(I)    D1(I)/A1(I)      A2(I)         D2(I)        D2(I)/A2(I)

 T o t a l              TPI          TDI      TDI/TPI           TPII          TDII         TDII/TPII

TPI = sum of A1(I)

TPII = sum of A2(I)

TDI = sum of D1(I)

TDII = sum of D2(I)

   D I R E C T L Y   A D J U S T E D  ( S T A N D A R D I Z E D )  R A T E S

 Subcategory       Total Number of                 Population        A                                              Population        B

                               Animals of Both                 -----------------------------------------------             ---------------------------------------

                                 Populations                      Rate                         Number of                          Rate                    Number of

                                                                                                                  Cases                                                            Cases

 SC$(I)                     A1(I)+A2(I)                 D1(I)/A1(I)     (A1(I)+A2(I))*(D1(I)/A1(I)       D2(I)/A2(I)    (A1(I)+A2(I))*(D2(I)/A2(I))

 T o t a l                           TP                          TD1/TP                             TD1                              TD2/TP                   TD2

TP = sum of (A1(I)+A2(I))

TD1 = sum of (A1(I)+A2(I))*(D1(I)/A1(I))

TD2 = sum of (A1(I)+A2(I))*(D2(I)/A2(I))

Directly adjusted rate of the first population   = TD1/TP

Directly adjusted rate of the second population  = TD2/TP

If (TD1/TP)>(TD2/TP) then the result is No.1 else No.2

Result No.1:

    Comparative index    =  TD1/TP / TD2/TP  = ((TD1/TP)/(TD2/TP))

    The adjusted IN$ rate of the population A is superior   over the population B adjusted rate   by ((TD1/TP)/(TD2/TP))*100-100 %

Result No.2:

    Comparative index    =  TD2/TP / TD1/TP  = ((TD2/TP)/(TD1/TP))

    The adjusted rate of the population B is superior   over the population A adjusted rate   by ((TD2/TP)/(TD1/TP))*100-100 %

 

12.4-TWO POPULATIONS RATES' COMPARISON ADJUSTMENT BASED ON CATEGORY STANDARDS                                                          (Ref.: Martin et al.)

(indirect standardization based on standard category specific rates)

   This subprogramme calculates the comparison adjustment of stratum-specific rates (investigation results)  in two populations (herds, flocks, groups, etc.) with the same categories (according to sex, age, breed, etc.) but in different proportions influencing the comparison result.

INPUT DATA  (all rates in form of proportion, i.e. number between >0 and 1 !):

     place, time - PL$,TI$

     species, disease(s) - SP$,DI$

     indicator/rate  - IN$

     average rate for standard population - AR

     category(ies) - CA$

     population A, population B - A$,B$

     number of observed cases in population A, in population B - CA,CB

     number of subcategories  - N

FOR I=1 TO N

List of data - subcategory names,   number of animals of population A, population B,  standard population rates :

I:   subcategory, pop. A, pop. B, standard rate - SC$(I),A(I),B(I),S(I)

            SUMMARY  TABLE  OF   B A S I C    I N P U T    D A T A

                               P o p u l a t i o n  A           P o p u l a t i o n  B

                              --------------------------------   --------------------------------

 Subcategory       Number of   Proportion     Number of   Proportion   Standard

                                Animals                                Animals                           Population

                                                                                                                        Rates

 SC$(I)                         A(I)          A(I)/SA             B(I)           B(I)/SB           S(I)

SA = sum of A(I)

SB = sum of B(I)

 T o t a l                       SA            1.0000                SB              1.0000

 C a s e s                     CA                                       CB

 Crude rate               CA/SA                                CB/SB                                  AR

A1=(A(1)/SA)*S(1)

A2=(A(2)/SA)*S(2)

A3=(A(3)/SA)*S(3)

A4=(A(4)/SA)*S(4)

A5=(A(5)/SA)*S(5)           SUA=A1+A2+A3+A4+A5

The rate expected if the standard rates applied in population A = SUA

This leads to standardized cases ratio = ((CA/SA)/SUA)*100 %

B1=(B(1)/SB)*S(1)

B2=(B(2)/SB)*S(2)

B3=(B(3)/SB)*S(3)

B4=(B(4)/SB)*S(4)

B5=(B(5)/SB)*S(5)           SU2=B1+B2+B3+B4+B5

The rate expected if the standard rates applied in population B = SU2

This leads to standardized cases ratio = ((CB/SB)/SU2)*100 %

Indirect adjusted rate for the total population A = ((CA/SA)/SUA)*AR

Indirect adjusted rate for the total population B = ((CB/SB)/SU2)*AR

Comparative index A/B   =  ((CA/SA)/SUA)*AR / ((CB/SB)/SU2)*AR   = (((CA/SA)/SUA)*AR)/(((CB/SB)/SU2)*AR)*100 %

Comparative index B/A   =  ((CB/SB)/SU2)*AR / ((CA/SA)/SUA)*AR  = (((CB/SB)/SU2)*AR)/(((CA/SA)/SUA)*AR)*100 %

If (CA/SA)/SUA>(CB/SB)/SU2 then the result is No.1  else No.2

Result No.1:

The adjusted IN$ rate of the population A is superior over the population B adjusted rate by ((CA/SA)/SUA)/((CB/SB)/SU2)*100-100) %

Result No.2:

The adjusted IN$ rate of the population B is superior over the population A adjusted rate by ((CB/SB)/SU2)/((CA/SA)/SUA)*100-100) %

 

12.5-SELECTION OF METHODS FOR SPECIFIC DISEASE CONTROL PROGRAMME

Assessment of eligibility according to method impact ability - effectivity, inputs availability in a given place/territory and time after analyzing all substantial factors influencing  strategy/measures practicability and probability of success of time-bounded programmes, using grading scales.

This subprogramme can be used also for selection of strategy for specific control programme.

INPUT DATA:

diseases - D$

programme objectives - DI$

place, period - LU$,TI$

Number  of methods (incl. combinations) in consideration - N

Scales consist of  g r a d e s  (0 to 10 !). All questions must be answered !

FOR I=1 TO N

 method No. I :          name:   N$(I)

grades of availability (considering programme objectives):

  legislation, diagnosis, analysis, measures           - B(I),G(I),Z(I),S(I)

grades of inputs availability, success probability               - F(I),D(I)

Programme target multiplier coefficients are prefixed:

              legislation                            = 5

              diagnosis                              = 7

              analysis                               = 5

              measures)                              = 9

Do you accept these values (y) or you will use others (o) ?

IF 'o' THEN IGB=?, IGE=?, IGZ=?, IGS=?

Define values (1>10 !) of realistic programme target multiplier coefficients fitting better to the given conditions/period than the prefixed values:

              legislation      - IGB

              diagnosis        - IGE

              analysis         - IGZ

              measures         - IGS

 

  SELECTION OF PRIORITY METHODS FOR SPECIFIC DISEASE CONTROL PROGRAMME

Method(s)              Grades of Availability                 Grades    of

                                  ---------------------------------            ----------------------

                                  legis-  diag.   analy-  mea-           input     proba-                T O T A L

                                  lation  nosis   sis     sures           avai-      bility                     points

                               ---------------------------------------       labi-      of

        Multiplier        *IGB   *IGE   *IGZ   *IGS            lity          success

 ---------------------------------------------------------------------------------------------------------------

FOR I=1 TO N

SU(I)=B(I)*IGB+G(I)*IGE+Z(I)*IGZ+S(I)*IGS

RES(I)=SU(I)*F(I)*D(I)

        N$(I)                +B(I)    +G(I)   +Z(I)   +S(I)          *F(I)        *D(I)                      RES(I)

T=0

FOR I=1 TO N

T=T+RES(I)

         Method(s)           Proportion          Percentage

                                     of   the   total   allocated points

FOR I=1 TO N

         N$(I)                      RES(I)/T           RES(I)/T*100

         T o t a l                  1.0000                 100.0000

 

12.6-SURVEY RESPONSE RATE

INPUT DATA:

  purpose of survey      - PS$

  place, time            - PL$,TI$

  survey conducted by: face-to-face inquiry (f), postal service (m),  questionnaire (q), phone (p), postal service (m) or electronic mail (e) - TS$

  number of individuals (units) who would have been surveyed if all  had participated (survey sample) - NI

  number of individuals (units) who was reached for the survey     - IR

  number of completed or returned survey instrument (questionnaire,  interview, etc.)   - CS

RESULT:

IF TS$='f' THEN TS$='face-to-face inquiry

IF TS$='q' THEN TS$='self-completed questionnaire

IF TS$='p' THEN TS$='phone

IF TS$='m' THEN TS$='postal service

IF TS$='e' THEN TS$='electronic mail

RESULT:

                   Survey sample rate              =  IR/NI

                   Response rate of survey sample  =  CS/NI

                   Response rate of surveyed       =  CS/IR

 

12.7-DILUTION OF SOLUTION FOR DISINFECTION, DISINFESTATION, ETC.

                                                          Ref.: Manual of Veterinary Investigation Laboratory Techniques Ministry of Agriculture, Fisheries and Food, U.K., 1978, p.34

Subprogramme calculates required volume of certain concentration of the solutions for disinfection, disinfestation, treatment, etc.

INPUT DATA:

solution - SO$           purpose - PU$

place, time - PL$,TI$

required concentration in %                 - R

volume measure units                       - MU$

total volume of solution required           - V

original concentration in %  (major than required concentration)  - O

RESULT:

R*V/O  MU$  of  O %  solution   must be diluted with  V-(R*V/O)  MU$  of diluent  to obtain  V  MU$  of R % solution

 Note: See also 10.8. subprogramme

 

12.8-SUMMARY VALUE OF ANIMAL PRODUCTS PER ONE VETERINARIAN

This subprogramme calculates average value of products of animal origin per one veterinarian.

place, time       - PL$,TI$

measure units     - MU$

Types of animal products  - N

List products, value in measure units:

FOR I=1 TO N

product, value - AP$(I),X(I)

T=T+X(I)

total number of veterinarians:         - TV

number of government veterinarians     - QV

number of accredited veterinarians     - AV

number of private veterinarians        - PV

 

RESULTS:

FOR I=1 TO N

    I:   AP$(I)                                         X(I) MU$

                                                 Total: T MU$

Average value per one veterinarian            = T/TV  MU$

Average value per one government veterinarian = T/QV  MU$

Average value per one accredited veterinarian = T/AV  MU$

Average value per one private veterinarian    = T/PV  MU$

 

12.9-VALUE OF INDIVIDUAL ANIMAL PRODUCTS PER ONE VETERINARIAN

This subprogramme calculates average individual values of products (produced, traded, exported, imported or consumed) of animal origin per one veterinarian.

The average values of the products are calculated for the veterinarian (total), government, private and accredited ones.

The total amounts of the products are divided per the number of veterinarian. Used method is similar to the method used in previous subprogramme (12.8).

 

12.10-ANIMAL COMMODITY EXPORT/IMPORT SIZE PER ONE VETERINARIAN

This subprogramme calculates average size of exported/imported animal commodities per one veterinarian.

place, time                    - PL$,TI$

measure units                  - MU$

export (e) or import (i)       - EI$

Types of animal commodities  - N

T=0

List:  commodity, quantity in measure units:

FOR I=1 TO N

    I: commodity, quantity - AP$(I),X(I)

T=T+X(I)

total number of veterinarians:       - TV

number of government veterinarians   - QV

number of accredited veterinarians   - AV

number of private veterinarians      - PV

RESULTS:

Commodity:                                      Quantity:

FOR I=1 TO N

    I:   AP$(I)                                        X(I) MU$

                                                Total: T MU$

Average value per one veterinarian              =  T/TV MU$

Average value per one government veterinarian   =  T/QV MU$

Average value per one accredited veterinarian   =  T/AV MU$

Average value per one private veterinarian      =  T/PV MU$

 

12.11-PER CAPITA PRODUCTION OF FOOD OF ANIMAL ORIGIN

This subprogramme calculates average production of food (event. of other products) of animal origin per one person according to:   1) product           2) place           3) time

The results are obtained dividing total quantity of respective products by the number of persons living in a given place and time.

INPUT DATA:

     place, period              - PL$,PE$

     total number of persons   - IH

     product                   - PR$

     product measure units     - MU$

     number of products or places or subperiods) - N

List data:

FOR I=1 TO N

ad 1 - product, measure units, quantity      - P$(I),U$(I),Q#(I)

ad 2 - place, persons, product quantity      - IN$(I),S#(I),Q#(I)

ad 3 - subperiod, persons, product quantity  - IN$(I),S#(I),Q#(I)

 T#=T#+Q#(I)

 S#=S#+S#(I)

PER   CAPITA  PRODUCTION   OF   FOOD   OF   ANIMAL   ORIGIN

ad 1:

     Product             Measure      Quantity      Average

                                  Units                              per Capita

FOR I=1 TO N

     P$(I)                     U$(I)             Q#(I)          Q#(I)/IH

 

ad 2: Place and

ad 3: Subperiod     Persons      Quantity      Average                    Grand     T o t a l

                                                    of Product    per Capita                 Proportion           %

FOR I=1 TO N

    IN$(I)                   S#(I)             Q#(I)         Q#(I)/S#(I)                  Q#(I)/T#      Q#(I)/T#*100

 T o t a l                    S#                 T#               T#/S#                            1.000         100.0000

 

12.12-SELECTION OF PRIORITY DISEASES FOR CONTROL PROGRAMME

This subprogramme facilitates selection of the most important diseases for the control programme, considering all substantial factors influencing strategy/measures practicability, inputs availability and probability of success of time-bounded programme in a given place/territory and period. The procedure is similar as described in the subprogramme 9.1., however using different criteria.

The criteria used in this case consist in the assessment: of diseases importance, ability to detect these diseases, to analyze their situation, to apply necessary measures and of the availability of inputs and probability of success.

 

12.13-TRUE PREVALENCE ESTIMATION BASED ON DIAG. METHOD DETECTABILITY

This subprogramme evaluates the results of animal population investigation applying diagnostic method detectability grade for the estimation of true prevalence rate from apparent prevalence rate, i.e. based on positive results. Detectability rate represents the ability of a given diagnostic method to detect (discover) all specifically affected animals (including all disease forms such as subclinical cases, etiological agents carriers, etc.).

INPUT DATA:

     apparent prevalence rate -  proportion of animals with positive test - APR

     test detectability rate                             - DE

RESULT:

     Estimated true prevalence rate among tested animals = APR/D   = APR/D*100 %

 

 

 

       13-ANNEX I - SELECTED BASIC STATISTICAL METHODS

        

         1-Arithmetic mean and measures of dispersion

         2-Arithmetic mean from grouped data and measures of dispersion

         3-Calculation of proportion and its standard error

         4-Conversion between percentage/proportion and absolute data

         5-Distribution of cumulative frequencies

         6-Chi-square test and contingency tables

         7-McNemar's test - paired chi-square test

         8-Linear regression and correlation coefficient

         9-Fisher's test for small frequencies' comparison

         10-Moving averages - smoothing of time series

         11-Simple arithmetic operations

 

13.1-ARITHMETIC MEAN AND MEASURES OF DISPERSION

                                                Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,   Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 45-48,69-73

     This subprogramme calculates:

         - arithmetic and geometric mean

         - weighted arithmetic mean

   - arithmetic mean and measures of dispersion

 

13.2-ARITHMETIC MEAN FROM GROUPED DATA AND MEASURES OF DISPERSION

                                               Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,  Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 47,69-73

     This subprogramme calculates:

         - simple arithmetic mean from grouped data

         - arithmetic mean from grouped data and measures of dispersion

 

13.3-CALCULATIONS OF PROPORTION AND ITS STANDARD ERROR

                                   Ref.: Putt S.N.H. et al.(1987).- Veterinary epidemiology and economics in Africa, International Livestock Centre for Africa, Addis Ababa, p. 53-54

     This subprogramme calculates:

         - simple proportion

         - standard error of proportion

 

13.4-CONVERSION BETWEEN PERCENTAGE/PROPORTION AND ABSOLUTE DATA

     This subprogramme calculates:

         - percentage and proportion from absolute data

         - absolute data from percentage or proportion

 

13.5-DISTRIBUTION OF CUMULATIVE FREQUENCIES

                                                    Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,   Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 29-30

 

13.6-CHI-SQUARE TEST AND CONTINGENCY TABLES

                                                    Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,  Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 201-216, 345

                                                    Lon Poole (1982).- Programmi practici in BASIC. Edizione Italiana.   Grupo Editoriale Jackson, Milano, p. 155-158

     This subprogramme calculates :

         - chi-square test

         - frequency test - contingency table 2x2

         - frequency test - contingency table 2x3

         - frequency test - contingency table 2xN

         - table of chi-square critical values

 

13.7-McNEMAR'S TEST - PAIRED CHI-SQUARE TEST

                                                   Ref.: Navarro R. Fierro (1987).- Introduccion a la bioestadistica. Analisis  de variables binarias. McGraw-Hill de Mexico, p. 91-93

 

13.8-LINEAR REGRESSION  AND  CORRELATION COEFFICIENT

(testing relationship between two variables - independent/dependent)

                                               Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,    Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 221, 241-260

      This subprogramme calculates:

         - linear regression incl. correlation coefficient   (using least squares regression line)

         - simple linear correlation coefficient

         - coefficient of rank correlation

 

13.9-FISHER'S TEST FOR SMALL FREQUENCIES' COMPARISON

                                                     Ref.: Navarro R. Fierro (1987).- Introduccion a la bioestadistica. Analisis  de variables binarias. McGraw-Hill de Mexico, p. 88-91

    This subprogramme calculates the comparison test when some values   is minor than 5 and number of total cases is minor than.

 

13.10-MOVING AVERAGES - SMOOTHING OF TIME SERIES

                                                      Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,   Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 285-286

     This subprogramme calculates moving averages of order 3 reducing    unwanted fluctuation and extreme values - smoothing of time series.

 

13.11-SIMPLE ARITHMETIC OPERATIONS

This subprogramme carries out simple arithmetic operations:

          Additions                      Subtraction

          Multiplication               Division

          Exponentiation             Extraction of roots

 

 

 

       14-ANNEX II - OTHER SELECTED STATISTICAL AND ECONOMIC METHODS

 

         1-Test of the difference between two proportions

         2-Test of the difference between two arithmetic means

         3-Test of the difference in means of two small-sized samples

         4-Test of matched comparison between different values in pairs

         5-Confidence intervals estimates for population mean

         6-Confidence intervals estimates for population proportion

         7-Confidence intervals for the difference between means

         8-Confidence intervals for the difference between proportions

         9-Table of Student's 't' critical values

         10-Vet. service cost and animal population/production values

         11-Conversion between metric and Anglo-Saxon measures

         12-Analysis of critical point of production economic efficiency

         13-Application of interest, discount and inflation rate

         14-Conversion between national currencies' values

         15-Model of budget for animal health programme - I

         16-Model of budget for animal health programme - II

 

 

14.1-TEST OF THE DIFFERENCE BETWEEN TWO PROPORTIONS

(sample proportions obtained in large samples)

                                     Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,    Mc Graw-Hill Inc., Hartford Graduate Center, USA, p.170-171, 181-183

 

14.2-TEST OF THE DIFFERENCE BETWEEN TWO ARITHMETIC MEANS

(sample means obtained in large samples)

                                    Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,   Mc Graw-Hill Inc., Hartford Graduate Center, USA, p.170-171, 181-183

 

14.3-TEST OF THE DIFFERENCE IN MEANS OF TWO SMALL-SIZED SAMPLES

                                    Ref.: Putt S.N.H. et al.(1987).- Veterinary epidemiology and economics    in Africa, International Livestock Centre for Africa, Addis Ababa, p.62-63

 

14.4-TEST OF MATCHED COMPARISON BETWEEN DIFFERENT VALUES IN PAIRS

                                    Ref.: Putt S.N.H. et al.(1987).- Veterinary epidemiology and economics    in Africa, International Livestock Centre for Africa, Addis Ababa, p.63-64

 

14.5-CONFIDENCE INTERVALS ESTIMATES FOR POPULATION MEAN

                                    Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,    Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 157-162

 

14.6-CONFIDENCE INTERVALS ESTIMATES FOR POPULATION PROPORTIONS

                                    Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,   Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 158, 162

 

14.7-CONFIDENCE INTERVALS FOR THE DIFFERENCE BETWEEN TWO POPULATION MEANS

                                    Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,   Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 158-159, 163-164

 

14.8-CONFIDENCE INTERVALS FOR THE DIFFERENCE BETWEEN PROPORTIONS

                                    Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,   Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 163-164

 

14.9-TABLE OF CRITICAL VALUES FOR  S T U D E N T'S  't'  DISTRIBUTION

                                    Ref.: Putt S.N.H. et al.(1987).- Veterinary epidemiology and economics  in Africa, International Livestock Centre for Africa, Addis Ababa, p.62

                                    Ref.: Spiegel M.R. (1988).- Theory and Problems of Statistics, 2nd edition,   Mc Graw-Hill Inc., Hartford Graduate Center, USA, p. 344

 

14.10-VETERINARY SERVICE COST AND ANIMAL POPULATION/PRODUCTION VALUES

     This original subprogramme calculates the ratios of veterinary service   cost to values of animal populations and their production which   health protection and wholesomeness the service is jointly responsible for.

INPUT DATA:

place/territory           - TE$                       period   - PE$

veterinary service (type) - VS$

monetary units            - MU$

veterinary service total cost                      - A

veterinary service net cost (total minus income)   - B

value of domestic animal populations               - C

value of animal production                         - D

market value of animal production                  - E

RESULT:

         Ratio service cost/population value                 =  A/C   =  1 : C/A

         Ratio service cost/production value                 =  A/D   =  1 : D/A

         Ratio service cost/production market value          =  A/E  =  1 : E/A

         Ratio service cost/production + population values     =  A/(D+C)  =  1 : (D+C)/A

         Ratio service net cost/population value             =  B/C   =  1 : C/B

         Ratio service net cost/production value             =  B/D  =  1 : D/B

         Ratio service net cost/production market value      =  B/E  =  1 : E/B

         Ratio service net cost/production + population values =  B/(D+C)   =  1 : (D+C)/B

 

14.11-CONVERSION BETWEEN METRIC AND ANGLO-SAXON MEASURES

Based on official sources.

 

14.12-ANALYSIS OF CRITICAL POINT OF PRODUCTION ECONOMIC EFFICIENCY

(break-even analysis; applicable also for service economic efficiency)

     Given four of the following variables:    fixed costs, sale price per unit, variable cost per unit,   number of units sold and gross profit,  this subprogramme evaluates the remaining variable.     To calculate the break-even values,  let the gross profit equal zero (= 0).

INPUT DATA:

     phenomenon - PH$             monetary units - U$

     S k i p  indicator to be calculated;   the other four data must be available !

          gross profit (benefit)     - GP

          number of units sold       - U           price of unit  - P

          total fixed costs          - F

          variable cost per unit     - V

Price  should be major than variable cost per unit !

 

RESULTS:

         Variable cost per unit        =  P-(GP+F)/U

         Total fixed costs             =  (U*(P-V))-GP

         Price of unit                 =  ((GP+F)/U)+V

         Number of units to be sold    =  (GP+F)/(P-V)

         Gross profit (benefit)        =  (U*(P-V))-F

 

14.13-APPLICATION OF INTEREST, DISCOUNT AND INFLATION RATES                                                                                                   (Ref.: Putt et al.)

     This subprogramme calculates:   1) Changed values applying compound annual interest rate

INPUT DATA:

         monetary units                                - MU$

         initial value (of present - base year 0)      - VP

         value of annual interest rate (0-1)           - IA

         number of years                               - N

RESULT:

         F u t u r e      V a l u e s

         End of year           Amount

FOR I=1 TO N

            I                      VP*(1+IA)^(I)

 

14.13-APPLICATION OF INTEREST, DISCOUNT AND INFLATION RATES                                                                                                  (Ref.: Putt et al.)

     This subprogramme calculates:  2) Changed values applying annual discount rate

INPUT DATA:

          monetary units                         - MU$

          value to be discounted                 - VD

          value of annual discount rate (0-1)    - DA

          number of years                        - N

RESULT:

         D i s c o u n t e d    v a l u e s

         End of year         Discount              Amount

                                         factor

FOR I=1 TO N

            I                     1/(1+DA)^(I)           VD/(1+DA)^(I)

 

14.13-APPLICATION OF INTEREST, DISCOUNT AND INFLATION RATES                                                                                                 (Ref.: Putt et al.)

     This subprogramme calculates:  3) Annual interest rate

 INPUT  DATA:

         monetary units                            - MU$

         initial value (of present - base year 0)  - VP

         value of the future year (value must be

           major than that of the present year)    - VF

         number of years between the present

                              and future values    - N

RESULT:

     Calculation of the annual interest rate

 L=(LOG(VF)-LOG(VP))/N

     To achieve from the initial value of VP MU$  during N years  the future value of VF MU$   there is a need for the annual interest rate of EXP(L)-1

(EXP - exponential function)

 

14.13-APPLICATION OF INTEREST, DISCOUNT AND INFLATION RATES                                                                                               (Ref.: Putt et al.)

     This subprogramme calculates:   4) Number of years to reach a given value

INPUT DATA:

          monetary units                            - MU$

          initial value (of present - base year 0)  - VI

          final value (of a given future year)      - VF

          value of annual interest rate  (0-1)      - IA

RESULT:

     Calculation of the number of years to reach a given value

D=LOG(VF/VI)/LOG(1+IA)

     To reach from the initial (present) value of VI MU$  the future value of VF MU$  when applying annual interest rate of IA   then necessary number of years = D

 

14.13-APPLICATION OF INTEREST, DISCOUNT AND INFLATION RATES                                                                                                (Ref.: Putt et al.)

     This subprogramme calculates:  5) Inflation index

INPUT DATA:

     product (service), measure units, quantity - S$,U$,Q

     monetary units - M$

     base year - AB               determinate year - AN

 S k i p  indicator to be calculated! All other three data must be available:

          average price in the base year                      - PO

          average price in the determinate year               - PN

          cost of a given quantity of product(service)   in the base year      - CO

          cost of the same quantity of the product(service)  in the determinate year      - CN

RESULT:

     Cost in the base year           = CN*PO/PN   M$

     Cost in the determinate year    = CO/(PO/PN) M$

     Price in the base year          = CO*(PN/CN) M$

     Price in the determinate year   = PO/(CO/CN) M$

Inflation index between the year AB and the year AN = ((PN/PO)*100)-100  or   = ((CN/CO)*100)-100   i.e. average annual change to base year value   =                                      =  (((PN/PO)*100)-100)/(AN-AB) %      or     =  (((CN/CO)*100)-100)/(AN-AB) %

 

14.13-APPLICATION OF INTEREST, DISCOUNT AND INFLATION RATES                                                                                                (Ref.: Putt et al.)

     This subprogramme calculates:   6) Changed values applying annual inflation rate

INPUT DATA:

          monetary units                            - MU$

          initial value (of base year 0)            - VP

          value of annual inflation rate (0-1)      - IN

          number of years                           - N

RESULT:

       End of     Amount = Initial     Reduced Future

        Year             Value                       Values

FOR I=1 TO N

         I             VP*((1+IN)^(I))       VP/((1+IN)^(I))

 

14.14-CONVERSION BETWEEN NATIONAL CURRENCIES' VALUES

INPUT DATA:

          currency A  - A$

          currency B  - B$

Answer only one question of the four (skip other three questions):

     value of one unit of A currency in B currency   - C

     value of one unit of B currency in A currency   - D

     values of a given product (service)    in A currency, in B currency          - G,H

     prices of a unit of a given product (service)   in A currency, in B currency          - E,F

RESULT:

V=(1/C)                           Rate   B$ to A$   =   1  :  V

Z=(1/D)                           Rate   A$ to B$   =   1  :  Z

     Rate   A$ to B$   =  1  :  H/G

     Rate   B$ to A$   =  1  :  G/H

If the price of the same thing has the price in A$ = E  and in B$  = F   following results are obtained:

     Rate   A$ to B$   =  1  :  F/E

     Rate   B$ to A$   =  1  :  E/F

 

14.15-MODEL OF BUDGET FOR ANIMAL HEALTH PROGRAMME - I

 This subprogramme calculates the budget up to 5 years' period providing that  the basic costs for individual components as well as the eventual inflation  rate are the same in each year. The structure is similar to UNDP projects.

INPUT DATA

     programme - NA$

     place, period - PL$,TI$

     duration of the programme in years (up to 5)            - Y

     monetary units                                          - MU$

     calculation with inflation, yes (y) or no (n)           ? y

     inflation rate (as proportion, i.e. number between >0 and 1) - IN

A n n u a l   c o s t   of individual components:

     1. personnel                      - C(1)

     2. administrative support         - C(2)

     3. duty travel                    - C(3)

     4. subcontracts                   - C(4)

     5. training                       - C(5)

     6. expendable equipment           - C(6)

     7. non-expendable equipment       - C(7)

     8. premises                       - C(8)

     9. operation and maintenance      - C(9)

     10. other expenditure             - C(10)

 

     B U D G E T   FOR  ANIMAL  HEALTH  PROGRAMME

Budget component  T o t a l             1. year               2. year                 3. year                4. year                  5.year

FOR I=1 TO 10

SC(I)=C(I)+(C(I)*(1+IN)^1)+(C(I)*(1+IN)^2)+(C(I)*(1+IN)^3)+(C(I)*(1+IN)^4)

 I      A$(I)                    SC(I)                   C(I)             (C(I)*(1+IN)^1    C(I)*(1+IN)^2   C(I)*(1+IN)^3     C(I)*(1+IN)^4

Y1=C(1)

Y2 = sum of C(I)*(1+IN)

Y3 = sum of C(I)*(1+IN)^2

Y4 = sum of C(I)*(1+IN)^3

Y5 = sum of C(I)*(1+IN)^4

GT1=Y1+Y2+Y3+Y4+Y5

  T o t a l                     GT1                       Y1                       Y2                       Y3                       Y4                       Y5

 

14.15-MODEL OF BUDGET FOR ANIMAL HEALTH PROGRAMME - I

 This subprogramme calculates the budget up to 5 years' period providing that  the basic costs for individual components as well as the eventual inflation  rate are the same in each year. The structure is similar to UNDP projects.

INPUT DATA

     programme - NA$

     place, period - PL$,TI$

     duration of the programme in years (up to 5)            - Y

     monetary units                                          - MU$

     calculation with inflation, yes (y) or no (n)           ? n

A n n u a l   c o s t   of individual components:

     1. personnel                      - C(1)

     2. administrative support         - C(2)

     3. duty travel                    - C(3)

     4. subcontracts                   - C(4)

     5. training                       - C(5)

     6. expendable equipment           - C(6)

     7. non-expendable equipment       - C(7)

     8. premises                       - C(8)

     9. operation and maintenance      - C(9)

     10. other expenditure             - C(10)

 

     B U D G E T   FOR  ANIMAL  HEALTH  PROGRAMME

Budget component  T o t a l    1. year   2. year   3. year   4. year   5.year

FOR I=1 TO 10

 I     A$(I)                       5*C(I)       C(I)       C(I)        C(I)        C(I)       C(I)

TC = sum of C(I)

TCY=TC*Y

  T o t a l                         TCY          TC        TC         TC          TC        TC

 

14.16-MODEL OF BUDGET FOR ANIMAL HEALTH PROGRAMME - II

 This subprogramme calculates the budget up to 5 years' period for up to  10 components to be defined by the user, providing that the basic costs  for individual components as well as the eventual inflation rate  are the same in each year.

INPUT DATA

     programme - NA$

     place, period - PL$,TI$

     duration of the programme in years (up to 5)               - Y

     monetary units - MU$

     calculation with inflation, yes (y) or no (n)              ? y

     inflation rate (as proportion, i.e. number between >0 and 1)    - IN

     how many budget components (up to 10)                      - N

FOR I=1 TO N

Annual costs of individual components:

   I:     component name, cost    CO$(I),C(I)

SC(I)=C(I)+(C(I)*(1+IN)^1)+(C(I)*(1+IN)^2)+(C(I)*(1+IN)^3)+(C(I)*(1+IN)^4)

 

     B U D G E T   FOR  ANIMAL  HEALTH  PROGRAMME

Budget component  T o t a l    1. year     2. year               3. year                 4. year                   5.year

I          CO$(I)                SC(I)        C(I)   C(I)*(1+IN)^1     C(I)*(1+IN)^2    C(I)*(1+IN)^3      C(I)*(1+IN)^4

  T o t a l                         GT1          Y1            Y2                     Y3                        Y4                             Y5

Y1=C(1)

Y2 = sum of C(I)*(1+IN)

Y3 = sum of C(I)*(1+IN)^2

Y4 = sum of C(I)*(1+IN)^3

Y5 = sum of C(I)*(1+IN)^4

GT1=Y1+Y2+Y3+Y4+Y5

 

14.16-MODEL OF BUDGET FOR ANIMAL HEALTH PROGRAMME - II

 This subprogramme calculates the budget up to 5 years' period for up to  10 components to be defined by the user, providing that the basic costs  for individual components as well as the eventual inflation rate  are the same in each year.

INPUT DATA

     programme - NA$

     place, period - PL$,TI$

     duration of the programme in years (up to 5)               - Y

     monetary units - MU$

     calculation with inflation, yes (y) or no (n)              ? n

     how many budget components (up to 10)                      - N

FOR I=1 TO N

Annual costs of individual components:

   I:     component name, cost    CO$(I),C(I)

 

     B U D G E T   FOR  ANIMAL  HEALTH  PROGRAMME

Budget component  T o t a l    1. year   2. year   3. year   4. year   5.year

 I                CO$(I)        5*C(I)        C(I)        C(I)        C(I)        C(I)        C(I)

  T o t a l                        TCY          TC          TC         TC         TC         TC

TC=TC+C(I)

TCY=TC*Y